Molecular identification of strains of Bacillus spp. and its use as growth-promoting rhizobacteria in tomato (Lycopersicum esculentum Mill.)
DOI:
https://doi.org/10.17268/sci.agropecu.2020.04.13Keywords:
Plant growth promoting rhizobacteria, Bacillus, rhizobacteria, biofertilizer, promoter.Abstract
The application of plant growth promoting rhizobacteria (PGPR) constitutes an ecological practice that contributes to agricultural production systems and is presented as an option for reducing the use of chemical fertilizers. The tomato is in high demand around the world, its production requires efficient nutrition to supply the quantity and quality demand that the market requires, therefore, in the present investigation two bacterial strains were evaluated: Bacillus licheniformis (IB10) and Bacillus megaterium (CT11) as growth promoters in kidney tomato seedlings by testing in seedbeds. Statistical differences are evident in the different variables evaluated, the application of specific B. licheniformis at the time of planting caused an increase of 10% in the thickness of the stem and a 100% increase in the amount of dry biomass, the weekly application of B. megaterium problems the photosynthetic efficiency in 18% and problems in 11% the length of the roots of the seedlings. The results generated may allow the bacterial strains to be used as alternatives to chemical fertilizers.References
Adesemoye, A.; Obini, M.; Ugoji, O. 2008. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian Journal of Microbiology 39: 423-426.
Acurio, D.; Tenorio, E.; Collaguazo, L.; et al. 2020. Evaluation of Bacillus megaterium strain AB4 as a potential biocontrol agent of Alternaria japonica, a mycopathogen of Brassica oleracea var. italica. Biotechnology Reports 26: 454.
Cabra, T.; Rodríguez, C.; Villota, C.; et al. 2017. Efecto de Bacillus sobre la germinación y crecimiento de plántulas de tomate (Solanum lycopersicum L). Acta Biológica Colombiana 22: 37-44.
Calero, A.; Quintero, E.; Pérez, Y.; et al. 2019. Evaluación de microorganismos eficientes en la producción de plántulas de tomate (Solanum lycopersicum L.). Revista de Ciencias Agrícolas 36(1): 67-78.
Camelo, M.; Vera, S. P.; Bonilla, R. R. 2011. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria 12(2): 159-166.
Chaudhary, D.; Kumar, A.; Mandhania, S.; et al. 2012. Maize As Fodder An alternative approach. Disponible en: www.maizeindia.org
Chauhan, A.; Guleria, S.; Walia, A.; et al. 2014. Isolation and characterization of Bacillus sp. With their effect on growth of tomato seedlings. Indian Journal of Agricultural Biochemistry 27: 193-201.
Chiluisa-Utreras, V.; Campaña, M.; Acurio, D. 2020. Determinación microbiológica y molecular mediante PCR en tiempo real de dos bacterias del género Bacillus de interés agro biotecnológico. Bionatura 5(2): 1106-1110.
Corrales, C.; Caycedo, L.; Gómez, M.; et al. 2017. Bacillus spp.: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova Scientia 15(27): 45–65.
Coronel. J.; Maresa, A.; Marques, A. 2016. Lichenysin production and application in the pharmaceutical field. Research Signpost 37: 147-163.
Costales, D.; Martínez, L.; Núñez, M. 2007. Efecto del tratamiento de semillas con una mezcla oligogalacturónidos sobre el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill). Cul. Trop 28: 85-91.
ESPAC - Encuesta de superficie y producción Agropecuaria Contininua. 2018. Tabulados ESPAC. Disponible en https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/
Espinosa, B.; Moreno, A.; Cano, P.; et al. 2017. Inoculación de rizobacterias promotoras del crecimiento vegetal en tomate (Solanum lycopersicum L.) cv. afrodita en invernadero. Tierra Latinoamericana 35: 169-178.
Espinosa-Palomeque, B.; Cano-Rios, P. 2019. Bioinoculantes y concentración de la solución nutritiva sobre la producción y calidad de tomate. Revista de Ciencias Biológicas y de la Salud 21: 100-107.
Gómez, O.; Casanova, A,; Cardoza, H.; et al. 2010. Guía Técnica para la producción de cultivo de tomate. Editora Agroecológica. Biblioteca ACTAF. IIH"Liliana Dimitrova". La Habana, Cuba.
Gonzales, S.; Perales, H.; Álvarez, M. 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica 27: 119-129.
Grover, M.; Ali, S.; Sandhya, V.; et al. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology 27: 1231-1240.
INIAP. 2009. Comportamiento de las principales variedades comerciales de tomate de mesa (Lycopersicum esculentum mili) al parasitismo de los nematodos “nudo de la raíz” (Meloidogyne incognita) y “rosario de la tüálz” (Nacobbus aberrans) en Ibarra - Imbabura. Tesis bachiller, Universidad Técnica del Norte. Ecuador.
Kalita, M.; Bharadwaz, M.; Dey, T.; et al. 2015. Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian Journal of Experimental Biology 53: 56-60.
Lu, T.; Yu, H.; Li, Q.; et al. 2019. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Frontiers in Plant Science 10: 8-15.
Madslien, E.; Rønning, H.; Lindbäck, T.; et al. 2013. Lichenysin is produced by most Bacillus. Journal of Applied Microbiology: 115:1068-1080.
Mamarandi, J.; Ojeda, A. 2019. Evaluación de cepas de Bacillus spp. como microorganismos promotores del crecimiento vegetal (PGPR) en brócoli (Brassica oleracea) y lechuga (Lactuca sativa). Trabajo de titulación. Universidad Politécnica Salesiana. 103 pp.
Martínez, L. 2011. Micorrizas arbusculares en ecosistemas semiáridos: respuesta a factores de estrés ambiental. Ecosistemas 20: 117-120.
Martínez, L.; Martínez, R.; Hernández, M.; et al. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista Fitotecnia Mexicana 36: 63-69.
Molina-Romero, D.; Bustillos-Cristales, M.; Rodríguez- Andrade, O.; et al. 2015. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Revista de La DES Ciencias Biológico Agropecuarias 17: 24-34.
Nayak, P.; Mohanty, A.; Gaonkar, T.; et al. 2013. Rapid Identification of Polyhydroxyalkanoate Accumulating Members of Bacillales Using Internal Primers for phaC Gene of Bacillus megaterium. ISRN Bacteriology 2: 1-12.
Olanrewaju, O.; Glick, B.; Babalola, O. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33: 1-16.
Porcel, R.; Zamarreño, Á.; García-Mina, J.; Aroca, R. 2014. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology 14: 1-12.
Radhakrishnan, R.; Hashem, A.; Allah, E. 2017. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology 8: 1-14.
Ribaudo, C.; Krumpholz, E.; Cassán, F.; et al. 2006. Azospirillum sp. Promotes root hair development in tomato plants through a mechanism that involves ethylene. Journal of Plant Growth Regulation 25: 175-185.
Rojas-Badía, M. M.; Bello-González, M. A.; Ríos-Rocafull, Y.; et al. 2020. Utilización de cepas de Bacillus como promotores de crecimiento en hortalizas comerciales. Acta Agronómica, 69: 54-60.
Russo, V.; Perkins-Vaeazi, A. 2010. Yield and Nutrient Content of Bell Pepper Pods from Plants Developed from Seedlings Inoculated, or Not, with Microorganisms. American Society for Horticultural Science 45: 3525-358.
Saleem, M.; Arshad, M.; Hussain, S.; et al. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology 34: 635-648.
Sambrook, J.; Russell, W. 2001. Molecular Cloning. A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press. New York, EE.UU.
Santillana, N.; Arellano, C.; Zúñiga, D. 2005. Capacidad del Rhizobium de promover el crecimiento en plantas de tomate (Lycopersicon esculentum Miller). Ecología Aplicada 4: 47-51.
Shameer, S.; Prasad. T. 2018. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation 84: 603-615.
Singh, V.; Singh, A.; Kumar, A. 2017. Disease management of tomato through PGPB: current trends and future perspective. Biotech 7: 255.
Terry, E.; Galán, L. 2006. Evaluación agrobiológica de la coinoculación micorrizas-rizobacterias en tomate. Agronomia Costarricense 30: 65-73.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).