Characterization of Phytophthora spp. and application of rhizobacteria with biocontrol potential in black pod disease in Theobroma cacao variety CCN-51

Authors

  • Ángel Virgilio Cedeño Moreira Departamento de Biotecnología, Laboratorio de Microbiología Molecular-PGPR, Facultad de Ciencias Agrarias. Universidad Técnica Estatal de Quevedo, EC. 120501, Los Ríos. http://orcid.org/0000-0002-6564-5569
  • Ricardo Fernando Romero Meza Departamento de Biotecnología, Laboratorio de Microbiología Molecular-PGPR, Facultad de Ciencias Agrarias. Universidad Técnica Estatal de Quevedo, EC. 120501, Los Ríos. http://orcid.org/0000-0002-3915-3309
  • Javier Andrés Auhing Arcos Departamento de Biotecnología, Laboratorio de Microbiología Molecular-PGPR, Facultad de Ciencias Agrarias. Universidad Técnica Estatal de Quevedo, EC. 120501, Los Ríos. http://orcid.org/0000-0003-4537-7234
  • Antonio Francisco Mendoza León Departamento de Biotecnología, Laboratorio de Microbiología Molecular-PGPR, Facultad de Ciencias Agrarias. Universidad Técnica Estatal de Quevedo, EC. 120501, Los Ríos. http://orcid.org/0000-0001-5103-0152
  • Fernando Abasolo Pacheco Departamento de Biotecnología, Laboratorio de Microbiología Molecular-PGPR, Facultad de Ciencias Agrarias. Universidad Técnica Estatal de Quevedo, EC. 120501, Los Ríos. http://orcid.org/0000-0003-2268-7432
  • Hayron Fabricio Canchignia Martínez Departamento de Biotecnología, Laboratorio de Microbiología Molecular-PGPR, Facultad de Ciencias Agrarias. Universidad Técnica Estatal de Quevedo, EC. 120501, Los Ríos. http://orcid.org/0000-0003-1195-5446

DOI:

https://doi.org/10.17268/sci.agropecu.2020.04.05

Keywords:

Phytophthora, Theobroma cacao, rhizobacteria, biocontrol, growth promoting rhizobacteria in plants, antagonist.

Abstract

The objective of the work focused on characterizing the biodiversity of Phytophthora spp. and rhizobacteria with potential for biocontrol in black pod disease in CCN-51. Nine plant samples with symptoms of the disease were collected from cocoa-producing areas, evaluating their morphological characteristics and identification by PCR. Different morphotypes of colonies are observed: cottony, regular and starry edge characteristic for Phytophthora spp. Electrophoresis profiles reveal an amplicon of 159 bp for P. palmivora, demonstrating its distribution in the nine zones. The tests on mycelial inhibition in vitro to P. palmivora, determined high levels of antagonism of 78 and 60% by direct confrontation with the rhizobacteria. These results in bio-protection to CCN-51 by applications of P. veronii R4, A. calcoaceticus BMR2-12, S. marcescens PM3-8 and P. protegens CHA0 are effective in the control of P. palmivora strain (BL15), without the application of bacteria the disease progress is evidenced at the level foliar at 15 and 19 dpi with (2.00E + 05) zoospores. The edaphic application of rhizobacteria in CCN-51, the promoter capacity to plant growth and suppression of P. palmivora disease.

References

Acebo, Y.; Hernández, A.; Vandeputte, O.; et al. 2015. Characterization of Pseudomonas chlororaphis from Theobroma cacao L . rhizosphere with antagonistic activity against Phytophthora palmivora ( Butler ). Journal of Applied Microbiology 119: 1112–1126.

Ali, S.; Amoako, I.; Bailey, R.; et al. 2016. PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya’s field dominance in West Africa. Plant Pathology 65: 1095–1108.

Ali, S.; Shao, J.; Lary, D.; et al. 2017. Phytophthora megakarya and Phytophthora palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biology and Evolution 2: 1–22.

Anand, A.; Chinchilla, D.; Tan, C.; et al. 2020. Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms 8: 1–10.

Anderson, A.; Kim, Y. 2018. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protection 105: 62-69.

Appiah, A.; Flood, J.; Bridge, P.; et al. 2003. Inter and intraspecific morphometric variation and characterization of Phytophthora isolates from cocoa. Plant Pathology 52: 168–180.

Bahia, R.; Aguilar, C.; Luz, E.; et al. 2015. Resistance to black pod disease in a segregating cacao tree population. Tropical Plant Pathology 40: 13–18.

Barka, E.; Nowak, J.; Clément. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans Strain PsJN. Applied and Environmental Microbiology 72: 7246–7252.

Boudjeko, T.; Mouafo, R.; Zitouni, M.; et al. 2017. Streptomyces cameroonensis sp. nov., a geldanamycin producer that promotes Theobroma cacao growth. Microbes and Environments 32: 24–31.

Bukhat, S.; Imran, A.; Javaid, S.; et al. 2020. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research 238: 1-50.

Caulier, S.; Gillis, A.; Colau, G.; et al. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers Microbiology 9: 1–15.

Chávez, K.; Guato, J.; Peñafiel, M.; et al. 2018. Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S. Agricultural Sciences 11: 17–29.

Cornu, J.; Huguenot, D.; Jézéquel, K.; et al. 2017. Bioremediation of copper-contaminated soils by bacteria. World Journal of Microbiology and Biotechnology 33: 1-12.

Deberdt, P.; Mfegue, C.; Tondje, P.; et al. 2008. Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control 44: 149–159.

dos Santos, F.; Tata, A.; Belaz, K.; et al. 2016. Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and or peptide protein profiles. Analytical and Bioanalytical Chemistry 409: 1765-1777.

Efombagn, M.; Nyassé, S.; Sounigo, O.; et al. 2007. Participatory cocoa (Theobroma cacao) selection in Cameroon: Phytophthora pod rot resistant accessions identified in farmers fields. Crop Protection 26: 1467–1473.

El-Sayed, A.; Ali, G. 2020. Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasitica. Biological Control 140: 1–11.

Elsherbiny, E.; Amin, B.; Aleem, B.; et al. 2020. Trichoderma volatile organic compounds as a biofumigation tool against late blight pathogen Phytophthora infestans in postharvest Potato tubers. Journal of Agricultural and Food Chemistry 68: 8163-8171.

Evans, H.; Bezerra, J.; Barreto, R. 2013. Of mushrooms and chocolate trees: etiology and phylogeny of witches broom and frosty pod diseases of cacao. Plant Pathology 7: 728-740.

Goswami, D.; Dhandhukia, P.; Thakker, J. 2016. Expanding the Horizons for the use of Paenibacillus species as PGPR for sustainable agriculture. In Bacilli and Agrobiotechnology 4: 281-307.

Guest, D. 2006. Black Pod: Diverse pathogens with a global impact on cocoa yield. The American Phytopathological Society 2: 1650-1653.

Hardham, A. 2001. The cell biology behind Phytophthora pathogenicity. Australasian Plant Pathology 30: 91-98.

Hon, H. 2018. The taxonomy and biology of Phytophthora and Pythium. Journal of Bacteriology & Mycology 6: 1-7.

Hunziker, L.; Bönisch, D.; Groenhagen, U.; et al. 2015. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Applied and Environmental Microbiology 81: 821-830.

Keswani, C.; Singh, H.; García, C.; et al. 2020. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology 104: 1013-1034.

King, E.; Ward, M.; Raney, D. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine 44: 301-307.

Kravchenko, L.; Azarova, T.; Makarova, N.; et al. 2004. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73: 156-158.

Liu, H.; Xue, X.; Yu, Y.; et al. 2020. Copper ions suppress abscisic acid biosynthesis to enhance defense against Phytophthora infestans in potato. Molecular Plant Pathology 21: 636-651.

Maora, J., Liew, E., Guest, D. 2016. Limited morphological, physiological and genetic diversity of Phytophthora palmivora from cocoa in Papua New Guinea. Plant Pathology 3: 1-7.

Matos, Y.; Peteira, B.; Matos, G.; et al. 2011. Prueba de apareamiento en 90 aislamientos de Phytophthora, provenientes de frutos enfermos de cacao (Theobroma cacao Lin.) en el municipio de Baracoa. Revista de Protección Vegetal 26: 198-199.

Meena, B. 2014. Biological control of pest and diseases using fluorescent Pseudomonads. K. Sahayaraj (Ed.). Basic and applied aspects of biopesticides. 7: 187-322.

Meziane, H.; Van der Sluis, I.; Van Loon, L.; et al. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing. Molecular Plant Pathology 6: 177-185.

Miguelez, Y.; Acebo, Y.; Jaziri, M.; et al. 2019. Pseudomonas chlororaphis CP07 strain reduces disease severity caused by Phytophthora palmivora in genotypes of Theobroma cacao. European Journal of Plant Pathology 3: 1-11.

Okada, A.; Banno, S.; Ichiishi, A.; et al. 2005. Pyrrolnitrin interferes with osmotic signal transduction in Neurospora crassa. Pesticide Science Society of Japan 30: 378-383.

Paulin, M.; Novinsack, A.; Lanteigne, C.; et al. 2019. Interaction between DAPG and HCN producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the rhizosphere of tomato. American Society for Microbiology 28: 1-27.

Singh, H.; Jaiswal, V.; Singh, S.; et al. 2017. Antagonistic compounds producing plant growth promoting rhizobacteria: A tool for management of plant disease. Journal of Advances in Microbiology 3: 1-12.

Souza, J.; Arnould, C.; Deulvot, C.; et al. 2003. Effect of 2,4-Diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. The American Phytopathological Society 93: 966-975.

Ton, J.; Pelt, J.; Loon, L.; et al. 2002. Differential effectiveness of salicylate dependent and Jasmonate/Ethylene dependent induced resistance in Arabidopsis. The American Phytopathological Society 15: 27-34.

Verbon, E.; Trapet, P.; Stringlis, I.; et al. 2017. Iron and Immunity. Annual Review of Phytopathology 1: 1-21.

Verhagen, B.; Glazebrook, J.; Zhu, T.; et al. 2004. The transcriptome of rhizobacteria-Induced systemic resistance in Arabidopsis. The American Phytopathological Society 17: 895-908.

West, P.; Appiah, A.; Gow, N. 2003. Advances in research on oomycete root pathogens. Physiological and Molecular Plant Pathology 62: 99-113.

Widmer, T.; Laurent, N. 2006. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. European Journal of Plant Pathology 115: 377-388.

Zdor, R. 2014. Bacterial cyanogenesis: impact on biotic interactions. Journal of Applied Microbiology 5: 267-274.

Published

2020-11-29

How to Cite

Cedeño Moreira, Ángel V., Romero Meza, R. F., Auhing Arcos, J. A., Mendoza León, A. F., Abasolo Pacheco, F., & Canchignia Martínez, H. F. (2020). Characterization of Phytophthora spp. and application of rhizobacteria with biocontrol potential in black pod disease in Theobroma cacao variety CCN-51. Scientia Agropecuaria, 11(4), 503-512. https://doi.org/10.17268/sci.agropecu.2020.04.05

Issue

Section

Original Articles

Most read articles by the same author(s)