El SARS-CoV-2 y otros virus emergentes y su relación con la inocuidad en la cadena alimentaria

Autores/as

  • Marcial Silva-Jaimes Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias de la Universidad Nacional Agraria La Molina. Lima, Perú. Av. La Universidad s/n. La Molina, Lima. http://orcid.org/0000-0002-4648-4907

DOI:

https://doi.org/10.17268/sci.agropecu.2020.02.15

Palabras clave:

COVID-19, animales domésticos, Buenas Prácticas Pecuarias, Bienestar Animal, mercados húmedos, Buenas Prácticas de Manufactura, inocuidad de alimentos.

Resumen

Las pandemias de la influenza se relacionan al flujo viral de las aves silvestres y migratorias, pasando a los cerdos y aves de corral (huéspedes intermediarios), que terminaría contagiando al humano. La gestión de procesos mediante Buenas Prácticas Pecuarias (BPP) y Bienestar Animal deberían ser medidas importantes de prevención para evitar este contagio. En los coronavirus y el ébola existen huéspedes ancestrales (como los murciélagos) y huéspedes intermediarios (como la Civettictis civetta o la Paradoxurus hermaphroditus en el caso del SARS-CoV-1, los dromedarios en el caso de MERS-CoV, y serpientes y Manis javanica en el caso del SARS-CoV-2). En su estado natural el salto inter-especie tomaría mucho más tiempo en ocurrir; sin embargo, la existencia de mercados húmedos, donde los animales se comercializan, habría permitido que los virus encuentren en el ser humano un nuevo anfitrión. Además de la neumonía, la invasión del SARS-CoV-2 produce molestias temporales, como la diarrea, debido a la abundancia del receptor ACE-2 tanto en las células pulmonares como en los enterocitos, donde su replicación incrementaría la probabilidad de contagio por la vía fecal-oral. Este riesgo podría minimizarse mejorando los procedimientos de Buenas Prácticas de Manufactura (BPM) en la industria alimentaria. Investigaciones futuras deberían aclarar la relación entre los virus y sus anfitriones, así como el efecto del cambio climático y la disponibilidad de proteínas para el consumo humano, sobre estas pandemias.

Citas

Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; et al. 2017. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun 8: 1124-1124.

Arellano, S.; Soto, D.; Reeves, M.A.; et al. 2018. Ántrax cutáneo, último brote diagnosticado en Chile. Revista chilena de infectología 35(2): 195-197.

Bratanich, A. 2015. MERS-CoV: transmisión y el papel de nuevas especies hospederas. Revista Argentina de Microbiología 47(4): 279-281.

Bridges, C.B.; Lim, W; Hu-Primmer, J; et al. 2002. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997-1998. J Infect Dis 185: 1005-1010.

Briones, C.; Peretó, J. 2020. El origen del coronavirus SARS-CoV-2, a la luz de la evolución. Disponible en: https://theconversation.com/el-origen-del-coronavirus-sars-cov-2-a-la-luz-de-la-evolucion-136897.

Brookes, S.M.; Núñez, A.; Choudhury, B.; et al. 2010. Replication, Pathogenesis and Transmission of Pandemic (H1N1) 2009 Virus in Non-Immune Pigs. PLoS ONE 5(2): e9068.

Carlin, E.P.; Machalaba, C.; Berthe, F.C.; et al. 2019. Building resilience to biothreats: an assessment of unmet core global health security needs. Ecohealth Alliance. 55 pp.

CDC (Centers for Disease Control and Prevention). 2009. Swine Influenza A (H1N1) Infection in Two Children -Southern California, March-April 2009. MMWR Morb Mortal Wkly Rep. 58(15): 400-402.

Cui, J.; Li, F.; Shi, Z.L. 2019. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17(3):181-192.

Cyranoski, D. 2020. Mystery deepens over animal source of coronavirus. Nature. 579(7797): 18-19.

Dawood, F.S.; Jain, S.; Finelli, L.; et al. 2009. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team – Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360(25): 2605-2615.

FAO/OMS. 2003. Codex alimentarius. Código internacio-nal de prácticas recomendado principio generales de higiene de los alimentos CAC/RCP 1-1969 Rev 4.

Fauci, A.S. 2006. Emerging and re-emerging infectious diseases: Influenza as a prototype of the host-pathogen balancing act. Cell. 124(4): 665-670.

Fraser, D.; Weary, D.M.; Pajor, E.A.; et al. 1997. A scientific conception of animal welfare that reflects ethical concerns. Animal Welfare 6: 187-205.

Gatherer, D. 2009. The 2009 H1N1 influenza outbreak in its historical context. J Clin Virol 45(3): 174-178.

Gu, J.; Han, B.; Wang, J. 2020. COVID-19: Gastroin-testinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterology 158(6): 1518-1519.

Guan, Y.; Zheng, B.J.; He, Y.Q.; et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302(5643): 276-278.

Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. 2020. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect 104(3): 246-251.

Katz, J.M.; Lim, W.; Bridges, C.B.; et al. 1999. Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts. J Infect Dis 180(6): 1763-1770.

Kohl, C.; Kurth, A. 2014. European Bats as Carriers of Viruses with Zoonotic Potential. Viruses 6(8): 3110-3128.

Kolbach, M.; Carrasco-Zubera, J.E.; Vial-Letelier, V. 2015. Ébola: caracterización, historia y manifes-taciones cutáneas; lo que debemos saber. Rev Med Chile 143: 1444-1448.

Lam, T.T.Y.; Shum, M.H.H; Zhu, H.C.H.; et al. 2020. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature (In press).

Lyn, T.E. 2009. Desentierran historia de virus pandémicos de la gripe. IntraMED. Disponible en: https://www.intramed.net/contenidover.asp?contenidoid=61094.

Maciej, F.B.; Philippe, L.; Xiaowei, J.; et al. 2020. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. bioRxiv (In press).

Mahase, E. 2020. Covid-19: First coronavirus was described in The BMJ in 1965. BMJ 369: m1547.

Maines, T.R.; Lu, X.H.; Erb, S.M.; et al. 2005. Avian influenza (H5N1) virases isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79(18): 11788-800.

Mallapaty, S. 2020. What the cruise-ship outbreaks reveal about covid-19 - Closed environments are an ideal place to study how the new coronavirus behaves. Nature 580: 18.

Marsh, G.A.; Haining, J.; Robinson, J.; et al. 2011. Ebola Reston virus infection of pigs: clinical significance and transmission potential. J Infect Dis 204(Suppl 3): S804-S809.

Mendl, M. 2001 Animal husbandry: Assessing the welfare state. Nature 410(6824): 31-32.

Miguélez, S.A.; Piñero, F.J.; Montero, M.T.C; et al. 2009. Enfermedad tuberculosa por Mycobacterium bovis en la región de Murcia. Anales de Pediatría 71(4): 327-330.

Mizumoto, K.; Kagaya, K.; Zarebski, A.; et al. 2020 Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 25(10): 2000180.

Morens, D.M.; Daszak, P.; Taubenberger, J.K. 2020. Perspective: Escaping Pandora’s Box - Another No-vel Coronavirus. N Engl J Med 382(14): 1293-1295.

Morens, D.M.; Folkers, G.K.; Fauci, A.S. 2004. The challenge of emerging and re-emerging infectious diseases. Nature 430(6996): 242-249.

Ng, S.K. 2003. Possible role of an animal vector in the SARS outbreak at Amoy Gardens. Lancet. 362(9383): 570-572.

OIE (Organización Mundial de Sanidad Animal). 2006. Update on avian influenza in animals (types H5 and H7). Disponible en: https://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2006/.

OMS. 2009. El nivel de alerta de pandemia de gripe se eleva de la fase 5 a la fase 6. Disponible en:https://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/es/

OPS. 2009. Pandemia (H1N1) 2009 - Preguntas más frecuentes sobre la pospandemia. Disponible en: https://www.paho.org/hq/index.php?option=com_content&view=article&id=3331:pandemic-h1n1-2009-questions-answers-post-pandemic&Itemid=569&lang=es

Parrish, C.R.; Holmes, E.C.; Morens, D.M.; et al. 2008. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 72(3): 457-470.

Peiris, J.S.; Yuen, K.Y.; Osterhaus, A.D.; Stöhr, K. 2003. The Severe Acute Respiratory Syndrome. N Engl J Med 349(25): 2431-2441.

Rivera, A.; Messaoudi, I. 2015. Pathophysiology of Ebola Virus Infection: Current Challenges and Future Hopes. ACS Infect Dis 1: 186-197.

Robbins, J. 2012. News analysis: The ecology of disease. Disponible en: https://www.nytimes.com/2012/07/15/sunday-review/the-ecology-of-disease.html.

Ruan, Y.J.; Wei, C.L.; Ee, A.L.; et al. 2003. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361(9371): 1779-1785.

Scalera, N.M.; Mossad, S.B. 2009. The first pandemic of the 21st century: a review of the 2009 pandemic variant influenza A (H1N1) virus. Postgrad Med 121(5): 43-47.

SENASA. 2016. Buenas Prácticas Ganaderas: animales con mayor rentabilidad. Disponible en: https://www.senasa.gob.pe/senasacontigo/buenas-practicas-ganaderas-animales-con-mayor-rentabilidad/.

Sharp, P.M.; Hahn, B.H. 2011. Origins of HIV and the AIDS Pandemic. Cold Spring Harb Perspect Med 1(1): a006841.

Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1122-1125.

Tikellis, C.; Thomas, M.C. 2012. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int J Pept 2012: 256294.

Ungchusak, K.; Auewarakul, P.; Dowell, S.F.; et al. 2005. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med 352(4): 333-340.

Vásquez, F.N. 2020. COVID-19: Crónica De Una Pandemia Anunciada. Disponible en: https://www.animanaturalis.org/n/45361.

Vetter, P.; Lan, V.U.; L’Huillier, A.G.; et al. 2020. Clinical features of covid-19 - The wide array of symptoms has implications for the testing strategy. BMJ 369: m1470.

Vidal, J. 2020. Tip of the iceberg': is our destruction of nature responsible for Covid-19?. Disponible en: https://www.theguardian.com/environment/2020/mar/18/tip-of-the-iceberg-is-our-destruction-of-nature-responsible-for-covid-19-aoe?CMP=twt_a-environment_b-gdneco/.

WHO (World Health Organization Western Pacific Region). 2004. WHO investigates avian influenza outbreak in Viet Nam. Disponible en: https://www.who.int/csr/don/2004_01_13/en/

WHO (World Health Organization). 2016. Preventing disease through healthy environments: A global assessment of the burden of disease from environmental risks. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/204585/9789241565196_eng.pdf;jsessionid=65FE3CEAFA357E893101C6715BC25A30?sequence=1.

WHO (World health Organization). 2020. Water, sanitation, hygiene and waste management for COVID-19. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/331305/WHO2019-NcOV-IPC_WASH-2020.1-eng.pdf?sequence=1&isAllowed=y.

Yan, R.; Zhang, Y.; Li, Y.; et al. 2020. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 367(6485): 1444-1448.

Ye, Z.W.; Yuan, S.; Yuen, K.S.; et al. 2020. Zoonotic origins of human coronaviruses. Int J Biol Sci 16(10): 1686-1697.

Yeo, C.; Kaushal, S., Yeo, D. 2020. Enteric involvement of coronaviruses: is fecal-oral transmission of SARS-CoV-2 possible?. The Lancet Gastroenterol Hepatol 5(4): 335-337.

Zhang, T.; Qunfu, W.; Zhigang, Z. 2020. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology 30: 1346-1351.

Zhang, W.; Du, R.H.; Li, B.; et al. 2020. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections 9(1): 386-389.

Zhou, P.; Yang, X.L.; Wang, X.G.; et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.

Descargas

Publicado

2020-06-08

Cómo citar

Silva-Jaimes, M. (2020). El SARS-CoV-2 y otros virus emergentes y su relación con la inocuidad en la cadena alimentaria. Scientia Agropecuaria, 11(2), 267-277. https://doi.org/10.17268/sci.agropecu.2020.02.15

Número

Sección

Artículos de Revisión