Isolation of biosurfactant producing microorganisms and lipases from wastewaters from slaughterhouses and soils contaminated with hydrocarbons

Authors

  • Lizzie Becerra Universidad de San Martín de Porres, Chiclayo
  • María Horna Departamento de Investigación y Desarrollo de SOLAGRO SAC, Trujillo

DOI:

https://doi.org/10.17268/sci.agropecu.2016.01.03

Keywords:

Biosurfactant producing microorganisms, DNA sequencing, wastewaters

Abstract

Surfactants are amphipathic molecules which reduce stress at the interface, thereby increasing water solubility and availability of organic compounds are produced by bacteria, fungi, and yeasts. For the isolation of biosurfactant producing bacteria and lipases, was plant in inducing means 10% of sewage effluent from slaughterhouses and soils contaminated with hydrocarbons Province taps Trujillo - Peru. Isolates were seed in agar cultures lecithin and rhodamine agar for determination of lipase producers. The selected microorganisms were plate on blood agar and agar Siegmund and Wagner (SW) for preliminary selection of biosurfactants bacteria. Later it determined to those microorganisms producing surfactants by Emulsification Index (EI) and measurement of surface tension. Positive cultures these tests were select and identified by API galleries and molecular identification by DNA sequencing. Crops further reduced surface tension were P. aeruginosa and B. amyloliquefaciens, reaching reduce surface tension to 27.2 ± 0.4 and 31.03 ± 0.4 mN / m respectively, while P. stutzeri and Pseudomonas sp. reduced surface tension to 48.3 and 52.6 ± 0.4 mN / m respectively. We conclude, therefore, that 49 producing crops lipases province Trujillo, of which it was determined that Pseudomonas stutzeri, Pseudomonas sp, Pseudomonas aeruginosa and Bacillus amyloliquefaciens are producers of biosurfactants and can be applied in the area of biotechnology was obtained environmental for the removal and biodegradation of contaminants.

References

Bodour, A; Maier, R. 2002. Biosurfactants: types, screening methods, and applications, p. 750-770. In G. Bitton (ed.), Encyclopedia of environmental microbiology, 1st ed. John Wiley and Sons, Inc., Hoboken, N.J.

Bodour, A.; Drees, K.; Maier, R. 2003. Distribution of Biosurfactant-Producing Bacteria in Undisturbed and Contaminated Arid Southwestern Soils. Applied and Environmental Microbiology 69(6): 3280-87.

Bouchotroch, S.; Quesada, E.; Izquierdo, I.; Rodriguez, M.; Béjar. V. 2000. Bacterial exopolysaccharides produced by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. J. Ind. Microbiol. Biotechnol 24:374-378.

Camilios, D.; Meira, J.; de Araújo, J.; Mitchell, D.; Krieger, N. 2008. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81(3): 441-8

Cortés-Camargo, S.; Barragán-Huerta, B. 2013. Producción de biosurfactantes por microorganismos halófilos. Revista Sistemas Ambientales 6(1): 1-8.

Costa, S.; Nitschke, M.; Haddad. R.; Eberlin, M.; Contiero, J. 2006. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem 41:483–488.

Deziel, E.; Lepine, F.; Milot S.; Villemur. R. 2000. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485 (2-3): 145-152.

Henriksen, A.; Anthoni, U.; Nielsen, T.; Sørensen, J.; Christophersen, C.; Gajhede, M. 2000. Cyclic lipoundecapeptide tension from Pseudomonas fluorescens strain 96.578. Acta Crystallogr C 56:113-115.

Hubert, C.; Shen, Y.; Voordouw, G. 1999. Composition of toluene degrading microbial communities from soil at different concentrations of toluene. Appl. Environ. Microbiol 65 (7): 3064 70.

Isken, S.; Derks, A.; Wolffs, P.; de Bont, J. 1999. Effect of organic solvents on the yield of solvent tolerant Pseudomonas putida S12. Appl. Environ. Microbiol 65 (6): 2631-35.

Jain, D.; Collins-Thompson, D.; Lee, H.; Trevors, J.T. 1991. A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4): 271–279.

Jiménez, D.; Medina, S.; Gracida, J. 2010. Propiedades, aplicaciones y producción de biotensoactivos. Rev. Int. Contam. Ambient 26(1): 65-84.

Karanth, N.; Deo, P.; Veenanadig, N. 1999. Microbial production of biosurfactants and their importance. Curr Sci 77: 116–126.

Maier, R.; Soberón-Chávez, G. 2000. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential environmental applications. Appl. Microbiol. Biotechnol 54: 625-633.

Mulligan, C.; Cooper, D.; Neufeld, R. 1984. Selection of microbes producing biosurfactants in media without hydrocarbons. J Fermentation Technol 62(4): 311–314.

Mulligan, C. 2005. Environmental application for biosurfactants. Environ Pollut 133:183–198.

Ochoa-Loza, F. 1998. Physico-chemical factors affecting rhamnolipid (biosurfactant) application for removal of metal contaminants from soil. Ph.D. dissertation. University of Arizona, Tucson.

Plaza, G.; Zjawiony, I.; Banat, I. 2006. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. J Petro Science Eng 50(1): 71–77.

Rigo, E. 2004. Aplicação de lipases como auxiliary no pré-tratamento de efluentes de frigoríficos de suínos e bovinos. Dissertação (Maestría), URI, Erechim. RS.

Schulz, D.; Passeri, A.; Schmidt, M.; Lang, S.; Wagner, F.; Wray, V.; Gunkel, W. 1991. Marine biosurfactants. 1. Screening for biosurfactants among crude-oil degrading marine microorganisms from the North-Sea. Z Naturforsch 46(3-4): 197–203.

Siegmund, I.; Wagner, F. 1991. New method for detecting rhamnolipids excreted by Pseudomonas Swinburne species during growth on mineral agar. Biotechnol. Tech 5: 265 -268.

Stoyanov, S.; Rehage, H.; Paunov, V. 2003. Novel surface tensión isotherm for surfactans based on local density functional theory. Phys. Rev. Lett 91(8): 86-102.

Tuleva, B.; Ivanov, G.; Christova, N. 2002. Biosurfactant production by a new Pseudomonas putida strain. Z. Naturforsch 57: 356-360.

Yañez-Ocampo, G.; Wong-Villarreal, A. 2013. Biosurfactantes Microbianos, Producción Potencial con Residuos Agroindustriales de Chiapas. Bio Tecnología 17(3): 12-28.

Youssef, N.; Duncan, K.; Nagle, D.; Savage, K.; Knapp, R.; McInerney, M. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56(3): 339–347.

Zhang, Y.; Miller, R. 1995. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol 61: 2247-2251.

Zhang, Y.; Maier, W.; Miller, R. 1997. Effects of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ. Sci. Technol 31: 2211-2217.

Received July 16, 2014.

Accepted March 14, 2016.

* Corresponding author

E-mail: lizzie_karen@hotmail.com (L. Becerra).

Published

2016-04-15

How to Cite

Becerra, L., & Horna, M. (2016). Isolation of biosurfactant producing microorganisms and lipases from wastewaters from slaughterhouses and soils contaminated with hydrocarbons. Scientia Agropecuaria, 7(1), 23-31. https://doi.org/10.17268/sci.agropecu.2016.01.03

Issue

Section

Original Articles