The role of polyphenols in food safety: mitigating the formation of acrylamide and hydroxymethylfurfural and their health risks

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2026.013

Palabras clave:

Polyphenols, Maillard reaction, Inhibition, Hydroxymethylfurfural, Acrylamide

Resumen

The formation of toxic compounds such as acrylamide (AA) and hydroxymethylfurfural (HMF) during thermal food processing (>120 °C) represents a significant risk to human health, as they have been associated with neurotoxic, genotoxic, and carcinogenic effects. However, several studies have shown that polyphenols can reduce the levels of these toxic compounds. In this context, this review examines the potential of polyphenols to mitigate the formation of AA and HMF via distinct mechanisms during the Maillard reaction (MR). In general, these compounds interact with precursors and intermediates of the MR. Thus, polyphenols represent a natural and effective strategy for improving food safety, thereby promoting the development of healthier products. However, Future challenges remain, including the elucidation of the chemical mechanisms involved in the action of polyphenols, an in-depth study of factors such as pH, temperature, and food matrix, toxicological and metabolic evaluations, regulatory aspects, the use of clean and sustainable technologies for obtaining polyphenols, optimization of extraction methods, and application in food matrices while considering sensory effects. A multidisciplinary approach will be vital to achieving the effective and safe application of polyphenols in the food industry.

Citas

Abd-Elhakim, Y. M., Mohamed, A. A. R., Khamis, T., Metwally, M. M. M., El-Shetry, E. S., Albaqami, A., Mawkili, W., Alosaimi, M. E., Alotaibi, B. S., ElAshmouny, N., Dahran, N., Alsharif, G., & Samak, M. A. (2024). Alleviative effects of green-fabricated zinc oxide nanoparticles on acrylamide-induced oxidative and inflammatory reactions in the rat stomach via modulating gastric neuroactive substances and the MiR-27a-5p/ROS/NF-κB axis. Tissue and Cell, 91, 102574. https://doi.org/10.1016/J.TICE.2024.102574

Abrantes, T., Moura-Nunes, N., & Perrone, D. (2022). Gallic Acid Mitigates 5-Hydroxymethylfurfural Formation while Enhancing or Preserving Browning and Antioxidant Activity Development in Glucose/Arginine and Sucrose/Arginine Maillard Model Systems. Molecules, 27(3), 848. https://doi.org/10.3390/molecules27030848

Aldawood, N., Alrezaki, A., Alanazi, S., Amor, N., Alwasel, S., Sirotkin, A., & Harrath, A. H. (2020). Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: An in vivo study. Ecotoxicology and Environmental Safety, 197, 110595. https://doi.org/10.1016/j.ecoenv.2020.110595

Alejolowo, O. O., Elias, A. O., Eseagwu, O. S., Nwonuma, C. O., & Osemwegie, O. O. (2024). Gallic acid modulates oxido-inflammatory response in acrylamide-induced hepato-renal toxicity. Scientific African, 23, e02024. https://doi.org/10.1016/j.sciaf.2023.e02024

Assefa, D., Dessalegn, E., & Abegaz, K. (2025). Endemic Dietary Herb Extracts Reduce Acrylamide and Enhance Sensory Characteristics of Potato Chips. Journal of Food Protection, 88(1), 100427. https://doi.org/10.1016/J.JFP.2024.100427

Auñon-Lopez, A., Strauss, M., Hinterreiter-Kern, E., Klein, A., Varga, E., & Pignitter, M. (2025). Influence of processing of seitan, tempeh, and firm regular tofu on protein and lipid oxidation and Maillard reaction products formation. Food Chemistry, 467, 142273. https://doi.org/10.1016/j.foodchem.2024.142273

Bachir, N., Haddarah, A., Sepulcre, F., & Pujola, M. (2023). Study the interaction of amino acids, sugars, thermal treatment and cooking technique on the formation of acrylamide in potato models. Food Chemistry, 408, 135235. https://doi.org/10.1016/j.foodchem.2022.135235

Baraka, S. M., Hussien, Y. A., Ahmed-Farid, O. A., Hassan, A., & Saleh, D. O. (2024). Acrylamide-induced hypothalamic-pituitary-gonadal axis disruption in rats: Androgenic protective roles of apigenin by restoring testicular steroidogenesis through upregulation of 17β-HSD, CYP11A1 and CYP17A1. Food and Chemical Toxicology, 194, 115078. https://doi.org/10.1016/j.fct.2024.115078

Bayati, M., & Poojary, M. M. (2025). Polyphenol autoxidation and prooxidative activity induce protein oxidation and protein-polyphenol adduct formation in model systems. Food Chemistry, 466, 142208. https://doi.org/10.1016/J.FOODCHEM.2024.142208

Becit-Kizilkaya, M., Oncu, S., Bilir, A., Atay, E., Soylemez, E. S. A., Firat, F., & Aladag, T. (2024). Effect of post-gastrulation exposure to acrylamide on chick embryonic development. Toxicology and Applied Pharmacology, 489, 117011. https://doi.org/10.1016/j.taap.2024.117011

Bi, T., Tian, Y., Zhou, D., Wang, X., & Jiang, H. (2024). Green tea marinades can reduce formaldehyde of pan-fried pork via Mannich reaction mechanism. LWT, 197, 115886. https://doi.org/10.1016/J.LWT.2024.115886

Bieck, K., Ebert, F., Grune, T., & Raupbach, J. (2025). Maillard reaction products in plant-based dairy alternatives and their release during simulated gastrointestinal digestion. Current Research in Food Science, 10, 100994. https://doi.org/10.1016/j.crfs.2025.100994

Borba, V. S. de, Barbosa, S. C., Kupski, L., & Primel, E. G. (2024). Acrylamide, hydroxymethylfurfural and furfural in ready-to-eat foods consumed by child population: Presence, risk assessment and future perspectives. Food Chemistry, 457, 140086. https://doi.org/10.1016/j.foodchem.2024.140086

Borczak, B., Sikora, M., Kapusta-Duch, J., Fołta, M., Szewczyk, A., Zięć, G., Doskočil, I., & Leszczyńska, T. (2022). Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. In Molecules (Vol. 27, Issue 17). https://doi.org/10.3390/molecules27175531

Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology, 44(4), 793–810. https://doi.org/10.1016/j.lwt.2010.11.002

Chang, Y.-C., Lan, Y.-Y., Lin, H.-Y., Liu, C., & Chang, S.-J. (2025). Low-molecular-weight polyphenol promotes cell sensitivity to cisplatin and alleviates cancer-related muscle atrophy via NF-κB suppression in oral squamous cell carcinoma. Journal of Oral Biosciences, 67(1), 100595. https://doi.org/10.1016/j.job.2024.100595

Chen, G., Wang, J., & Li, Y. (2022). Extracts of sorghum bran, grape seed, and green tea: Chromatographic comparison of phenolic profiles and mitigation effect on acrylamide in antioxidant-fortified bread. Food Chemistry Advances, 1, 100082. https://doi.org/10.1016/j.focha.2022.100082

Chen, K., Troise, A. D., De Pascale, S., Scaloni, A., Fogliano, V., & Madadlou, A. (2025). Compartmentalization vs. segregation of reactants: Accomplishment of the Maillard reaction at the water-water interface. Food Chemistry, 465, 142089. https://doi.org/10.1016/J.FOODCHEM.2024.142089

Chen, X., Tu, Q., Zhao, W., Lin, X., Chen, Z., Li, B., & Zhang, Y. (2024). 5-Hydroxymethylfurfural mediated developmental toxicity in Drosophila melanogaster. Food and Chemical Toxicology, 189, 114738. https://doi.org/10.1016/j.fct.2024.114738

Constantinou, C., & Koutsidis, G. (2016). Investigations on the effect of antioxidant type and concentration and model system matrix on acrylamide formation in model Maillard reaction systems. Food Chemistry, 197, 769–775. https://doi.org/10.1016/j.foodchem.2015.11.037

de Sousa Fontes, V. M., de Sousa Galvão, M., Moreira de Carvalho, L., do Nascimento Guedes, F. L., dos Santos Lima, M., Alencar Bezerra, T. K., & Madruga, M. S. (2024). Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds. Food Chemistry, 445, 138398. https://doi.org/10.1016/j.foodchem.2024.138398

Debnath-Canning, M., Unruh, S., Vyas, P., Daneshtalab, N., Igamberdiev, A. U., & Weber, J. T. (2020). Fruits and leaves from wild blueberry plants contain diverse polyphenols and decrease neuroinflammatory responses in microglia. Journal of Functional Foods, 68, 103906. https://doi.org/10.1016/J.JFF.2020.103906

Dong, S., Zhang, C., Wang, Y., Liu, S., Yang, J., Li, L., Ma, Y., & Liu, J. (2025). The protective effect of rutin on sciatic nerve injury in acrylamide-exposed rats and its mechanisms. Food and Chemical Toxicology, 195, 115106. https://doi.org/10.1016/j.fct.2024.115106

Du, W., Ma, Q., Li, Y., Bai, S., Huang, Y., Cui, W., Accoroni, C., Fan, B., & Wang, F. (2025). Effects of unsaturated C18 fatty acids on “glucose-glutathione” Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds. Food Research International, 201, 115645. https://doi.org/10.1016/j.foodres.2024.115645

El-Saadony, M. T., Yang, T., Saad, A. M., Alkafaas, S. S., Elkafas, S. S., Eldeeb, G. S., et al. (2024). Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. International Journal of Biological Macromolecules, 277, 134223. https://doi.org/10.1016/j.ijbiomac.2024.134223

El Bohi, K. M., Ghoniem, M. H., Azab, H. H., Ali, H., & Farag, M. R. (2020). Extra virgin olive oil enhances the hepatic antioxidant defense and inhibits cytogenotoxic effects evoked by 5-hydroxymethylfurfural in mice. Environmental Science and Pollution Research, 27(11), 11882–11891. https://doi.org/10.1007/s11356-020-07659-x

Farodoye, O. M., Otenaike, T. A., Loreto, J. S., Adedara, A. O., Silva, M. M., Barbosa, N. V., Rocha, J. B. T. da, Abolaji, A. O., & Loreto, E. L. S. (2024). Evidence of acrylamide-induced behavioral deficit, mitochondrial dysfunction and cell death in Drosophila melanogaster. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 284, 109971. https://doi.org/10.1016/j.cbpc.2024.109971

Gao, Q., Liu, X., Shi, J., Li, L., & Sun, B. (2025). Polyphenols in different parts of Moringa oleifera Lam.: Composition, antioxidant and neuroprotective potential. Food Chemistry, 475, 143207. https://doi.org/10.1016/J.FOODCHEM.2025.143207

García-Ríos, D., Hernández, I., Alvaro, J. E., Pedreschi, F., Campos, D., Behn, A., & Pedreschi, R. (2024). Analysis of Maillard reaction precursors and secondary metabolites in Chilean potatoes and neoformed contaminants during frying. Food Chemistry, 460, 140478. https://doi.org/10.1016/j.foodchem.2024.140478

Guan, M.-Y., Hu, C.-Y., Peng, Q.-S., Zeng, Y., A., W.-W., Wu, Z.-C., Wang, Z.-W., & Zhong, H.-N. (2023). Formation and migration of 5-hydroxymethylfurfural and furfural from food contact bamboo sticks during heating and their safety evaluation. Journal of Food Composition and Analysis, 117, 105146. https://doi.org/10.1016/j.jfca.2023.105146

Gupta, D., Shrivastava, S., Gupte, S. S., & Shukla, S. (2024). Caffeic acid attenuates acrylamide induced biochemical, hematological, and histological alterations in rats. Pharmacological Research - Natural Products, 3, 100031. https://doi.org/10.1016/j.prenap.2024.100031

Harun, M. U., Palma, M., & Setyaningsih, W. (2025). Development and Validation of Microwave-assisted Extraction for Phenolic Compound Profiling in Diverse Oyster Mushrooms (Pleurotus spp.) Sourced from Various Geographical Regions. Journal of Agriculture and Food Research, 101754. https://doi.org/10.1016/J.JAFR.2025.101754

He, H., Hou, Y., Wei, D., Che, D., Wang, C., Hu, T., Wang, N., & He, L. (2020). HMF causes anaphylactic symptoms by acting as a H1 receptor agonist. Biochemical Pharmacology, 177, 114008. https://doi.org/10.1016/j.bcp.2020.114008

He, S., Zhang, Z., Sun, H., Zhu, Y., Zhao, J., Tang, M., Wu, X., & Cao, Y. (2019). Contributions of temperature and l-cysteine on the physicochemical properties and sensory characteristics of rapeseed flavor enhancer obtained from the rapeseed peptide and d-xylose Maillard reaction system. Industrial Crops and Products, 128, 455–463. https://doi.org/10.1016/j.indcrop.2018.11.048

Hedegaard, R. V., Granby, K., Frandsen, H., Thygesen, J., & Skibsted, L. H. (2008). Acrylamide in bread. Effect of prooxidants and antioxidants. European Food Research and Technology, 227(2), 519–525. https://doi.org/10.1007/s00217-007-0750-5

Heydari Ashkezari, M., & Salehifar, M. (2019). Inhibitory effects of pomegranate flower extract and vitamin B3 on the formation of acrylamide during the donut making process. Journal of Food Measurement and Characterization, 13(1), 735–744. https://doi.org/10.1007/s11694-018-9986-y

Huamán-Castilla, N. L., Díaz Huamaní, K. S., Palomino Villegas, Y. C., Allcca-Alca, E. E., León-Calvo, N. C., Colque Ayma, E. J., Zirena Vilca, F., & Mariotti-Celis, M. S. (2024). Exploring a Sustainable Process for Polyphenol Extraction from Olive Leaves. Foods, 13(2), 1–13. https://doi.org/10.3390/foods13020265

Huang, H., Gao, Y., Wang, L., Yu, X., Chen, S., & Xu, Y. (2024). Maillard reaction intermediates in Chinese Baijiu and their effects on Maillard reaction related flavor compounds during aging. Food Chemistry: X, 22, 101356. https://doi.org/10.1016/j.fochx.2024.101356

Huang, M., Jiao, J., Wang, J., Xia, Z., & Zhang, Y. (2018a). Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. Environmental Pollution, 234, 656–666. https://doi.org/10.1016/J.ENVPOL.2017.11.095

Huang, M., Jiao, J., Wang, J., Xia, Z., & Zhang, Y. (2018b). Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. Journal of Hazardous Materials, 347, 451–460. https://doi.org/10.1016/J.JHAZMAT.2018.01.016

Huang, Q., Wen, T., Fang, T., Lao, H., Zhou, X., Wei, T., Luo, Y., Xie, C., Huang, Z., & Li, K. (2025). A comparative evaluation of the composition and antioxidant activity of free and bound polyphenols in sugarcane tips. Food Chemistry, 463, 141510. https://doi.org/10.1016/J.FOODCHEM.2024.141510

Jackson, L. S., & Al-Taher, F. (2022). Processing issues: acrylamide, furan, and trans fatty acids. In Ensuring Global Food Safety (pp. 229–257). Elsevier. https://doi.org/10.1016/B978-0-12-816011-4.00021-5

Ji, M., Zhang, Z., Li, N., Xia, R., Wang, C., Yu, Y., Yao, S., Shen, J., & Wang, S.-L. (2018). Identification of 5-hydroxymethylfurfural in cigarette smoke extract as a new substrate metabolically activated by human cytochrome P450 2A13. Toxicology and Applied Pharmacology, 359, 108–117. https://doi.org/10.1016/j.taap.2018.09.031

Jiang, Z., Han, Z., Qin, C., Lai, G., Wen, M., Ho, C.-T., Zhang, L., & Wan, X. (2021). Model Studies on the Reaction Products Formed at Roasting Temperatures from either Catechin or Tea Powder in the Presence of Glucose. Journal of Agricultural and Food Chemistry, 69(38), 11417–11426. https://doi.org/10.1021/acs.jafc.1c03771

Jing, Y., Li, X., Hu, X., Ma, Z., Liu, L., & Ma, X. (2019). Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the Science of Food and Agriculture, 99(14), 6482–6489. https://doi.org/10.1002/jsfa.9927

Kontaş Yedier, S., Atlı Şekeroğlu, Z., Şekeroğlu, V., & Aydın, B. (2022). Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food and Chemical Toxicology, 161, 112852. https://doi.org/10.1016/j.fct.2022.112852

Lee, C. H., Chen, Y. T., Hsieh, H. J., Chen, K. T., Chen, Y. A., Wu, J. T., Tsai, M. S., Lin, J. A., & Hsieh, C. W. (2020). Exploring epigallocatechin gallate impregnation to inhibit 5-hydroxymethylfurfural formation and the effect on antioxidant ability of black garlic. LWT, 117, 108628. https://doi.org/10.1016/J.LWT.2019.108628

Lee, S., Choi, E., & Lee, K.-G. (2024). Kinetic modelling of Maillard reaction products and protein content during roasting of coffee beans. LWT, 211, 116950. https://doi.org/10.1016/j.lwt.2024.116950

Li, D., Chen, Y., Zhang, Y., Lu, B., Jin, C., Wu, X., & Zhang, Y. (2012). Study on Mitigation of Acrylamide Formation in Cookies by 5 Antioxidants. Journal of Food Science, 77(11), C1144–C1149. https://doi.org/10.1111/j.1750-3841.2012.02949.x

Li, H., Zhu, F., Chen, H., Cheng, K. W., Zykova, T., Oi, N., Lubet, R. A., Bode, A. M., Wang, M., & Dong, Z. (2014). 6- C -( E -phenylethenyl)-Naringenin Suppresses Colorectal Cancer Growth by Inhibiting Cyclooxygenase-1. Cancer Research, 74(1), 243–252. https://doi.org/10.1158/0008-5472.CAN-13-2245

Li, Linzi, Lei, X., Chen, L., Ma, Y., Luo, J., Liu, X., Xu, X., Zhou, G., & Feng, X. (2024). Protective mechanism of quercetin compounds against acrylamide-induced hepatotoxicity. Food Science and Human Wellness, 13(1), 225–240. https://doi.org/10.26599/FSHW.2022.9250019

Li, Lu, Wang, Z., Yin, X., Yan, H., Li, W., Pang, Y., & Yuan, Y. (2025). Acrylamide induces mitochondrial dysfunction in HepG2 cells and mouse livers via mitochondria-associated endoplasmic reticulum membranes (MAM)-mitochondrial calcium ([Ca2+]mt) pathway. Food Bioscience, 63, 105832. https://doi.org/10.1016/J.FBIO.2025.105832

Liang, H.-Y., Gao, H.-X., Jing, Z., He, Q., & Zeng, W.-C. (2024). Regulation of tea polyphenols in gluten-glucose Maillard reaction: Evaluation and analysis. LWT, 205, 116508. https://doi.org/10.1016/j.lwt.2024.116508

Liu, J., Han, C., Shen, J., Lin, Y., Shen, H., & Wang, G. (2025). Acrylamide exposure promotes the progression of depression-like behavior in mice with CUMS via GSDMD-mediated pyroptosis. Ecotoxicology and Environmental Safety, 289, 117443. https://doi.org/10.1016/j.ecoenv.2024.117443

Liu, Y., Liu, C., Huang, X., Li, M., Zhao, G., Sun, L., Yu, J., & Deng, W. (2024). Exploring the role of Maillard reaction and lipid oxidation in the advanced glycation end products of batter-coated meat products during frying. Food Research International, 178, 113901. https://doi.org/10.1016/j.foodres.2023.113901

Ma, Y., Huang, H., Zhang, Y., Li, F., Gan, B., Yu, Q., Xie, J., & Chen, Y. (2022). Soluble dietary fiber from tea residues with inhibitory effects against acrylamide and 5-hydroxymethylfurfural formation in biscuits: The role of bound polyphenols. Food Research International, 159, 111595. https://doi.org/10.1016/j.foodres.2022.111595

Mertens, N., Heymann, T., & Glomb, M. A. (2020). Oxidative Fragmentation of Aspalathin Leads to the Formation of Dihydrocaffeic Acid and the Related Lysine Amide Adduct. Journal of Agricultural and Food Chemistry, 68(46), 13111–13120. https://doi.org/10.1021/acs.jafc.9b07689

Mildner-Szkudlarz, S., Różańska, M., Piechowska, P., Waśkiewicz, A., & Zawirska-Wojtasiak, R. (2019). Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chemistry, 297, 125008. https://doi.org/10.1016/j.foodchem.2019.125008

Mofidipour, M., Fadaei, V., & Salehifar, M. (2025). Inhibition of acrylamide and α-amylase and α-glucosidase activities in Echium amoenum powder fortified biscuits. Food Research International, 200, 115462. https://doi.org/10.1016/j.foodres.2024.115462

Monien, B. H., Frank, H., Seidel, A., & Glatt, H. (2009). Conversion of the Common Food Constituent 5-Hydroxymethylfurfural into a Mutagenic and Carcinogenic Sulfuric Acid Ester in the Mouse in Vivo. Chemical Research in Toxicology, 22(6), 1123–1128. https://doi.org/10.1021/tx9000623

Morales, G., Jimenez, M., Garcia, O., Mendoza, M. R., & Beristain, C. I. (2014). Effect of natural extracts on the formation of acrylamide in fried potatoes. LWT - Food Science and Technology, 58(2), 587–593. https://doi.org/10.1016/j.lwt.2014.03.034

Na, Z., Liu, S., Bi, H., He, X., & Liu, T. (2024). Inhibitory effects of polyphenols on the Maillard reaction in low-lactose milk and the underlying mechanism. Journal of Dairy Science, 107(12), 10512–10526. https://doi.org/10.3168/JDS.2024-25306

Nishimura, K., & Abe, T. (2025). Effect of protease reaction conditions on volatile compounds generated in Maillard reaction products from soy protein hydrolysates. Food Chemistry, 464, 141599. https://doi.org/10.1016/j.foodchem.2024.141599

Nonier Bourden, M. F., Vivas, N., Absalon, C., Vitry, C., Fouquet, E., & Vivas de Gaulejac, N. (2008). Structural diversity of nucleophilic adducts from flavanols and oak wood aldehydes. Food Chemistry, 107(4), 1494–1505. https://doi.org/10.1016/J.FOODCHEM.2007.10.012

Onacik-Gür, S., Szafrańska, A., Roszko, M., & Stępniewska, S. (2022). Interaction of dough preparation method, green tea extract and baking temperature on the quality of rye bread and acrylamide content. LWT, 154, 112759. https://doi.org/10.1016/j.lwt.2021.112759

Oral, R. A., Dogan, M., & Sarioglu, K. (2014). Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chemistry, 142, 423–429. https://doi.org/10.1016/j.foodchem.2013.07.077

Orta Yilmaz, B., & Aydin, Y. (2024). New insights into the mechanisms underlying 5-hydroxymethylfurfural-induced suppression of testosterone biosynthesis in vivo and in vitro. Toxicology and Applied Pharmacology, 493, 117142. https://doi.org/10.1016/j.taap.2024.117142

Pastoriza de la Cueva, S., Álvarez, J., Végvári, Á., Montilla-Gómez, J., Cruz-López, O., Delgado-Andrade, C., & Rufián-Henares, J. A. (2017). Relationship between HMF intake and SMF formation in vivo: An animal and human study. Molecular Nutrition & Food Research, 61(3), 1600773. https://doi.org/10.1002/MNFR.201600773

Pathiraja, D., Wanasundara, J. P. D., Elessawy, F. M., Purves, R. W., Vandenberg, A., & Shand, P. J. (2023). Water-soluble phenolic compounds and their putative antioxidant activities in the seed coats from different lentil (Lens culinaris) genotypes. Food Chemistry, 407, 135145. https://doi.org/10.1016/J.FOODCHEM.2022.135145

Pedreschi, F., Ferrera, A., Bunger, A., Alvarez, F., Huamán-Castilla, N. L., & Mariotti-Celis, M. S. (2021). Ultrasonic-assisted leaching of glucose and fructose as an alternative mitigation technology of acrylamide and 5- hydroxymethylfurfural in potato chips. Innovative Food Science & Emerging Technologies, 73, 102752. https://doi.org/10.1016/j.ifset.2021.102752

Pedreschi, F., Saavedra, I., Bunger, A., Zuñiga, R. N., Pedreschi, R., Chirinos, R., Campos, D., & Mariotti-Celis, M. S. (2018). Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes. LWT, 95, 116–122. https://doi.org/10.1016/j.lwt.2018.04.086

Pham, L. B., Wang, B., Zisu, B., & Adhikari, B. (2019). Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chemistry, 293, 463–471. https://doi.org/10.1016/J.FOODCHEM.2019.04.123

Piazza, S., Bani, C., Colombo, F., Mercogliano, F., Pozzoli, C., Martinelli, G., Petroni, K., Roberto Pilu, S., Sonzogni, E., Fumagalli, M., Sangiovanni, E., Restani, P., Dell’Agli, M., & Di Lorenzo, C. (2024). Pigmented corn as a gluten-free source of polyphenols with anti-inflammatory and antioxidant properties in CaCo-2 cells. Food Research International, 191, 114640. https://doi.org/10.1016/j.foodres.2024.114640

Pucci, M., Akıllıoğlu, H. G., Bevilacqua, M., Abate, G., & Lund, M. N. (2024). Investigation of Maillard reaction products in plant-based milk alternatives. Food Research International, 198, 115418. https://doi.org/10.1016/j.foodres.2024.115418

Purves, R. W., Khazaei, H., Elessawy, F. M., Munro, R., Shurmer, B. O., & Vandenberg, A. (2025). Investigation of polyphenol diversity among lentil species (Lens spp.) using mass spectrometry-based metabolomics guided by photodiode array detection. Food Research International, 209, 116154. https://doi.org/10.1016/J.FOODRES.2025.116154

Qi, Y., Zhang, H., Wu, G., Zhang, H., Gu, L., Wang, L., Qian, H., & Qi, X. (2018a). Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry, 250, 98–104. https://doi.org/10.1016/j.foodchem.2018.01.012

Qi, Y., Zhang, H., Wu, G., Zhang, H., Wang, L., Qian, H., & Qi, X. (2018b). Reduction of 5‐hydroxymethylfurfural formation by flavan‐3‐ols in Maillard reaction models and fried potato chips. Journal of the Science of Food and Agriculture, 98(14), 5294–5301. https://doi.org/10.1002/jsfa.9068

Qi, Y., Zhang, H., Zhang, H., Wu, G., Wang, L., Qian, H., & Qi, X. (2018c). Epicatechin Adducting with 5-Hydroxymethylfurfural as an Inhibitory Mechanism against Acrylamide Formation in Maillard Reactions. Journal of Agricultural and Food Chemistry, 66(47), 12536–12543. https://doi.org/10.1021/acs.jafc.8b03952

Qiu, Y., Lin, X., Chen, Z., Li, B., & Zhang, Y. (2022). 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. Journal of Agricultural and Food Chemistry, 70(12), 3852–3861. https://doi.org/10.1021/acs.jafc.2c00269

Quasmi, M. N., Kumar, D., & Jangra, A. (2025). Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Toxicology Reports, 14, 101859. https://doi.org/10.1016/J.TOXREP.2024.101859

Settels, E., Bernauer, U., Palavinskas, R., Klaffke, H. S., Gundert-Remy, U., & Appel, K. E. (2008). Human CYP2E1 mediates the formation of glycidamide from acrylamide. Archives of Toxicology, 82(10), 717–727. https://doi.org/10.1007/s00204-008-0296-8

Shamagsumova, R. V., Kulikova, T. N., Porfireva, A. V., Shurpik, D. N., Stoikov, I. I., Rogov, A. M., Stoikov, D. I., & Evtugyn, G. A. (2023). Electrochemistry and electrochemical assessment of host–guest complexation of substituted pillar[m]arene[n]quinones. Journal of Electroanalytical Chemistry, 938, 117444. https://doi.org/10.1016/J.JELECHEM.2023.117444

Shi, J., Fang, D., Sui, Y., Xiong, T., Chen, X., Fan, C., Zhou, D., Cai, F., & Mei, X. (2025). Polyphenol content, antioxidant capacity, and composition in different varieties of sweet potato (Ipomoea batatas L.) leaves during growth stages. Scientia Horticulturae, 342, 113925. https://doi.org/10.1016/j.scienta.2024.113925

Tang, Y., Huang, Y., Li, M., Zhu, W., Zhang, W., Luo, S., Zhang, Y., Ma, J., & Jiang, Y. (2024). Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Research International, 195, 114984. https://doi.org/10.1016/j.foodres.2024.114984

Thangamany, M., Janakiraman, A. K., X, C. P., Aung, Y. N., Shin, M. T., & K, S. (2025). Ameliorative effect of Yuganzi (Emblica officinalis) on chronic low-dose acrylamide-induced reproductive toxicity in male and female rats. Pharmacological Research - Modern Chinese Medicine, 14, 100569. https://doi.org/10.1016/j.prmcm.2024.100569

Timón, M. L., Manzano, R., Martín-Mateos, M. J., Sánchez-Ordóñez, M., Godoy, B., & Ramírez-Bernabé, M. R. (2025). Reduction of polycyclic aromatic hydrocarbons in pork burgers using high-pressure processed white grape pomace. LWT, 218, 117492. https://doi.org/10.1016/j.lwt.2025.117492

Trigg, N. A., Skerrett-Byrne, D. A., Xavier, M. J., Zhou, W., Anderson, A. L., Stanger, S. J., Katen, A. L., De Iuliis, G. N., Dun, M. D., Roman, S. D., Eamens, A. L., & Nixon, B. (2021). Acrylamide modulates the mouse epididymal proteome to drive alterations in the sperm small non-coding RNA profile and dysregulate embryo development. Cell Reports, 37(1), 109787. https://doi.org/10.1016/J.CELREP.2021.109787

Troise, A. D., Colantuono, A., & Fiore, A. (2020). Spray-dried olive mill wastewater reduces Maillard reaction in cookies model system. Food Chemistry, 323, 126793. https://doi.org/10.1016/j.foodchem.2020.126793

Troise, A. D., Wilkin, J. D., & Fiore, A. (2018). Impact of rapeseed press-cake on Maillard reaction in a cookie model system. Food Chemistry, 243, 365–372. https://doi.org/10.1016/j.foodchem.2017.09.153

Tyagi, K., Lui, A. C. W., Zhang, S., & Peck, G. M. (2025). Folin-Ciocâlteu, RP-HPLC (reverse phase-high performance liquid chromatography), and LC-MS (liquid chromatography-mass spectrometry) provide complementary information for describing cider (Malus spp.) apple juice. Journal of Food Composition and Analysis, 137, 106844. https://doi.org/10.1016/J.JFCA.2024.106844

Urbančič, S., Kolar, M. H., Dimitrijević, D., Demšar, L., & Vidrih, R. (2014). Stabilisation of sunflower oil and reduction of acrylamide formation of potato with rosemary extract during deep-fat frying. LWT - Food Science and Technology, 57(2), 671–678. https://doi.org/10.1016/j.lwt.2013.11.002

Valle-Sánchez, S. L., Rodríguez-Ramírez, R., Ávila-Villa, L. A., Villa-Lerma, A. G., Wall-Medrano, A., de la Rosa, L. A., Muñoz-Bernal, Ó. A., González-Córdova, A. F., & Arellano-Gil, M. (2025). Phenolic compounds profile in extracts of Smilax spp., antioxidant activity, and inhibition of advanced glycation end products. Food Chemistry, 463, 141389. https://doi.org/10.1016/J.FOODCHEM.2024.141389

Varelis, P. (2024). Hydroxymethylfurfural. In G. W. B. T.-E. of F. S. (Second E. Smithers (Ed.), Encyclopedia of Food Safety, Second Edition, Volume 1-4 (pp. 574–579). Elsevier. https://doi.org/10.1016/B978-0-12-822521-9.00247-1

Wang, A., Chen, X., Wang, L., Jia, W., Wan, X., Jiao, J., Yao, W., & Zhang, Y. (2022). Catechins protect against acrylamide- and glycidamide-induced cellular toxicity via rescuing cellular apoptosis and DNA damage. Food and Chemical Toxicology, 167, 113253. https://doi.org/10.1016/j.fct.2022.113253

Wang, A., Huang, Y., Song, X., Zeng, J., Zhu, L., Wang, B., Wu, Y., Xu, Z., Zheng, R., Qin, Y., Wang, J., Yao, W., Wan, X., Li, H., Zhuang, P., Jiao, J., Zhang, Y., & Wu, Y. (2024). Parental exposure to acrylamide disrupts sphingolipid metabolism and impairs transgenerational neurodevelopment in zebrafish (Danio rerio) offspring. Science of The Total Environment, 950, 175134. https://doi.org/10.1016/j.scitotenv.2024.175134

Wang, B., Zhao, F., Zhou, Z., Wang, J., Huang, X. hui, & Qin, L. (2025). The effect mechanism of different natural spices on the formation of associated hazardous compounds in roasted chicken. Food Chemistry, 474, 143170. https://doi.org/10.1016/J.FOODCHEM.2025.143170

Wang, F., Fan, B., Chen, C., & Zhang, W. (2022). Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food and Chemical Toxicology, 163, 112982. https://doi.org/10.1016/J.FCT.2022.112982

Wang, M., Wang, J., Li, W., Zhang, C., Xi, Y., Zhou, Y., Liu, X., & Li, H. (2025). Protective effects of polyphenol-rich sugarcane molasses extract against AGEs-induced glycosylation damage in L929 cells. Food Bioscience, 63, 105775. https://doi.org/10.1016/j.fbio.2024.105775

Wen, M., Cui, Y., Dong, C. X., & Zhang, L. (2021). Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing. Food Research International, 148, 110588. https://doi.org/10.1016/J.FOODRES.2021.110588

Wu, J., Lin, X., Li, J., Lv, Z., Duan, N., Wang, Z., & Wu, S. (2024). Dual-color nanospheres based on aggregation-induced emission and catalytic hairpin assembly for simultaneous imaging of acrylamide and miR-21 in living cells. Journal of Hazardous Materials, 462, 132815. https://doi.org/10.1016/J.JHAZMAT.2023.132815

Xie, L., Wang, T., Chen, L., & Li, X. (2025). Effects of myricetin on heterocyclic aromatic amines formation and sensory quality of Cantonese mooncakes. Food Chemistry, 465, 142084. https://doi.org/10.1016/J.FOODCHEM.2024.142084

Xu, C., Yagiz, Y., Marshall, S., Li, Z., Simonne, A., Lu, J., & Marshall, M. R. (2015). Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chemistry, 182, 200–208. https://doi.org/10.1016/j.foodchem.2015.02.133

Xu, T., Xia, R., He, F., Dong, E.-H., Shen, J.-M., Xu, C.-C., Ji, M.-H., & Xu, Q. (2023). 5-Hydroxymethylfurfural induces mice frailty through cell senescence-associated sarcopenia caused by chronic inflammation. Heliyon, 9(2), e13217. https://doi.org/10.1016/j.heliyon.2023.e13217

Xue, C., Li, Y., Quan, W., Deng, P., He, Z., Qin, F., Wang, Z., Chen, J., & Zeng, M. (2023). Simultaneous alleviation of acrylamide and methylimidazole accumulation in cookies by Rhizoma kaempferiae and kaempferol and potential mechanism revealed by density functional theory. LWT, 173, 114302. https://doi.org/10.1016/j.lwt.2022.114302

Yang, F., Chen, E., Fu, A., Liu, Y., & Bi, S. (2025). Formation of key aroma compounds in Agrocybe aegerita during hot air drying: Amino acids and reducing sugars identified as flavor precursors. Food Chemistry, 465, 141975. https://doi.org/10.1016/J.FOODCHEM.2024.141975

Yang, H., Li, L., Yin, Y., Li, B., Zhang, X., Jiao, W., & Liang, Y. (2019). Effect of ground ginger on dough and biscuit characteristics and acrylamide content. Food Science and Biotechnology, 28(5), 1359–1366. https://doi.org/10.1007/s10068-019-00592-x

Yang, L., Dong, L., Zhang, L., Bai, J., Chen, F., & Luo, Y. (2021). Acrylamide Induces Abnormal mtDNA Expression by Causing Mitochondrial ROS Accumulation, Biogenesis, and Dynamics Disorders. Journal of Agricultural and Food Chemistry, 69(27), 7765–7776. https://doi.org/10.1021/acs.jafc.1c02569

Yu, Z., Lu, Y., Wei, F., Zhang, Y., Dong, L., & Wang, S. (2024). The impact of natural spices additions on hazards development and quality control in roast beef patties. Food Chemistry, 435, 137644. https://doi.org/10.1016/j.foodchem.2023.137644

Yuan, Y., Li, Z., & Aisa, H. A. (2025). Targeted characterisation of bioactive prenylated flavonoids from Ficus carica L. fruits. Food Chemistry, 483, 144201. https://doi.org/10.1016/J.FOODCHEM.2025.144201

Zamora, R., & Hidalgo, F. J. (2018). Carbonyl–Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products. Journal of Agricultural and Food Chemistry, 66(6), 1320–1324. https://doi.org/10.1021/acs.jafc.7b05360

Zhang, C., Tan, J., He, J., Hu, Q., Li, J., & Xie, J. (2025). Effect of lysine on the cysteine-xylose Maillard reaction to form flavor compounds. Food Chemistry, 469, 142529. https://doi.org/10.1016/J.FOODCHEM.2024.142529

Zhang, H., Troise, A. D., Sun, S., & Fogliano, V. (2023). The water insoluble fraction from red cabbage and black currant pomace reduces the formation of acrylamide, 5-hydroxymethylfurfural and reactive aldehydes in fried potato-based crisps. LWT, 173, 114238. https://doi.org/10.1016/j.lwt.2022.114238

Zhang, Yinan, & An, X. (2017). Inhibitory mechanism of quercetin against the formation of 5-(hydroxymethyl)-2-furaldehyde in buckwheat flour bread by ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Food Research International, 95, 68–81. https://doi.org/10.1016/j.foodres.2017.03.007

Zhang, Yu, Xu, W., Wu, X., Zhang, X., & Zhang, Y. (2007). Addition of antioxidant from bamboo leaves as an effective way to reduce the formation of acrylamide in fried chicken wings. Food Additives & Contaminants, 24(3), 242–251. https://doi.org/10.1080/02652030601064839

Zheng, S., Huang, H., Guan, C., Zhang, L., Xiao, L., Pang, J., Chen, J., & Wang, L. (2024). Role of catechin on furfural inhibition in sugarcane juice during thermal treatment: Adducts and mechanism. Food Control, 160, 110364. https://doi.org/10.1016/J.FOODCONT.2024.110364

Zhu, F., Cai, Y.-Z., Ke, J., & Corke, H. (2009). Evaluation of the effect of plant extracts and phenolic compounds on reduction of acrylamide in an asparagine/glucose model system by RP‐HPLC‐DAD. Journal of the Science of Food and Agriculture, 89(10), 1674–1681. https://doi.org/10.1002/jsfa.3640

Zhu, F., Cai, Y., Ke, J., & Corke, H. (2011). Dietary plant materials reduce acrylamide formation in cookie and starch-based model systems. Journal of the Science of Food and Agriculture, 91(13), 2477–2483. https://doi.org/10.1002/jsfa.4491

Zou, W., Huang, H., Chen, J., & Wang, L. (2025). Inhibition mechanism of thermally induced furfural in simplified sugarcane juice model system by polyphenols. Food Chemistry: X, 27, 102469. https://doi.org/10.1016/J.FOCHX.2025.102469

Zouaoui, Z., Ennoury, A., El Asri, S., Laabar, A., Kabach, I., Laganà Vinci, R., Cacciola, F., Mondello, L., Taghzouti, K., & Nhiri, M. (2025). Polyphenols from rose pepper spice: LC-MS/MS characterization and therapeutic potential in diabetes mellitus management. Food Bioscience, 63, 105644. https://doi.org/10.1016/j.fbio.2024.105644

Descargas

Publicado

2025-11-10

Cómo citar

Quispe Angulo, M. F. ., Mamani-Pari, S. ., Saldaña, E. ., Rios-Mera, J. D. ., & Huamán-Castilla, N. L. . (2025). The role of polyphenols in food safety: mitigating the formation of acrylamide and hydroxymethylfurfural and their health risks. Scientia Agropecuaria, 17(1), 179-195. https://doi.org/10.17268/sci.agropecu.2026.013

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a

<< < 1 2