Management Information system for hemoparasitosis detection in canines through machine learning techniques
DOI:
https://doi.org/10.17268/agroind.sci.2026.01.10Palabras clave:
Veterinary diagnostics, machine learning, clinical decision-making, information management systemsResumen
This study presents the development and implementation of a web-based and mobile Management Information System (MIS) for the early detection and diagnosis of hemoparasitosis in canines, using machine learning algorithms. The system was deployed at Animal Place, a veterinary clinic in Guayaquil, in response to the increasing number of clinical cases associated with hemoparasitic infections. The platform integrates multiple clinical management modules, including a dedicated diagnostic module powered by a decision tree classification algorithm (J48), which achieved an accuracy of 96.4% based on a training set of 746 symptomatological records. The mobile application complements the web system by allowing users to monitor their pets’ clinical data and interact with an integrated chatbot assistant developed with DialogFlow. For system development, the Extreme Programming (XP) methodology was employed to ensure iterative progress, client feedback, and continuous testing. In parallel, the Knowledge Discovery in Databases (KDD) methodology was used to structure and preprocess clinical data, enabling the identification of key variables relevant to hemoparasitosis and training of the predictive model. Usability testing was conducted with 10 participants, including veterinary staff and administrative personnel. Results showed high levels of satisfaction (mean score = 4.5 on a 5-point scale), particularly regarding system functionality, ease of use, and interface clarity. These findings highlight the system's relevance, practicality, and user acceptance in a clinical setting. In conclusion, the proposed MIS successfully automates critical veterinary processes such as client registration, clinical history management, and disease detection, while significantly enhancing the accuracy and efficiency of early hemoparasitosis diagnosis in dogs. This research points out the transformative effects of machine learning and intelligent digital tools in veterinary practice and provides a scalable model for similar applications in animal health.
Citas
Adams, D. J., Rosenberg, D. E., & Yirui, H. (2016). Prevalence of vector-borne diseases in a sample of client-owned dogs on Santa Cruz in the Galápagos Islands: A pilot study. Veterinary Parasitology: Regional Studies and Reports, 6, 28-30. https://doi.org/10.1016/j.vprsr.2016.11.007
Aguirre-Munizaga, M., Briones-Zambrano, M., & Jurado-Chagerben, A. (2025a). Sistemas de Información Gerencial como una Herramienta Clave para la Toma de Decisiones Empresariales. MQRInvestigar, 9(1), e138. https://doi.org/10.56048/MQR20225.9.1.2025.e138
Aguirre-Munizaga, M., Carrasco, F., Aviles, F., Samaniego-Cobo, T., & Castro, C. M. (2025b). Web-Based System for the Diagnosis of Canine Diseases Using Data Mining Techniques. En Communications in Computer and Information Science (pp. 51-61). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75702-0_5
Chua, A. P. B., Galay, R. L., Tanaka, T., & Yamazaki, W. (2020). Development of a Loop-Mediated Isothermal Amplification (LAMP) Assay Targeting the Citrate Synthase Gene for Detection of Ehrlichia canis in Dogs. Veterinary Sciences, 7(4), Article 4. https://doi.org/10.3390/vetsci7040156
da Silveira, J. A. G., Rabelo, É. M. L., & Ribeiro, M. F. B. (2011). Detection of Theileria and Babesia in brown brocket deer (Mazama gouazoubira) and marsh deer (Blastocerus dichotomus) in the State of Minas Gerais, Brazil. Veterinary Parasitology, 177(1), 61-66. https://doi.org/10.1016/j.vetpar.2010.10.044
Dai, W., & Ji, W. (2014). A MapReduce Implementation of C4.5 Decision Tree Algorithm. International Journal of Database Theory and Application, 7(1), 49-60. https://doi.org/10.14257/ijdta.2014.7.1.05
Elasan, S., & Yilmaz, O. (2025). Comprehensive Global Analysis of Future Trends in Artificial Intelligence‐Assisted Veterinary Medicine. Veterinary Medicine and Science, 11(3). https://doi.org/10.1002/vms3.70258
Fiuza Lemos Ferreira, B. (2022). Leishmaniose visceral canina como diagnóstico diferencial para hemoparasitoses transmitidas por carrapatos: Relato de caso. Pubvet, 16(04). https://doi.org/10.31533/pubvet.v16n04a1081.1-7
Górecka, W., Skalski, K., Wochnik, M., & Dąbrowski, R. (2025). The use of artificial intelligence in the educational process from the perspective of a veterinary medicine student. https://doi.org/10.13140/RG.2.2.27849.45926
Haryanto, I. D., & Saefurrahman, S. (2024). Implementasi Chatbot Kesehatan Kucing Melalui Dialogflow dan Telegram untuk Pemberian Informasi Penyakit dan Perawatan. JTIM : Jurnal Teknologi Informasi dan Multimedia, 5(4), 365-376. https://doi.org/10.35746/jtim.v5i4.484
Hernández Bustos, M. B., & Fuentes Terán, V. M. (2018). La Ley Orgánica de Bienestar Animal (LOBA) en Ecuador: Análisis jurídico. Derecho Animal. Forum of Animal Law Studies, 9(3), 108. https://doi.org/10.5565/rev/da.328
Janke, N., Coe, J. B., Bernardo, T. M., Dewey, C. E., & Stone, E. A. (2021). Pet owners’ and veterinarians’ perceptions of information exchange and clinical decision-making in companion animal practice. PLOS ONE, 16(2), e0245632. https://doi.org/10.1371/journal.pone.0245632
Karasová, M., Tóthová, C., Grelová, S., & Fialkovičová, M. (2022). The etiology, incidence, pathogenesis, diagnostics, and treatment of canine babesiosis caused by Babesia gibsoni infection. Animals, 12, 739. https://doi.org/10.3390/ani12060739
Kraleva, R. S., Kralev, V. S., Sinyagina, N., Koprinkova-Hristova, P., & Bocheva, N. (2018). Design and Analysis of a Relational Database for Behavioral Experiments Data Processing. International Journal of Online and Biomedical Engineering (iJOE), 14, Article 2. https://doi.org/10.3991/ijoe.v14i02.7988
Nazareno González, G. M., & Quiroz García, A. L. (2025). Sistema Web Y Móvil Para El Reconocimiento Del Gusano Cogollero En La Producción De Maíz (Zea Mays L.) Mediante la Técnica Visión Por Computadora. Revista internacional de Investigación y Desarrollo Global, 4(2), 45-59. https://doi.org/10.64041/riidg.v4i2.36
Niknejad, N., Ismail, W., Ghani, I., Nazari, B., Bahari, M., & Hussin, A. R. B. C. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 91, 101491. https://doi.org/10.1016/j.is.2020.101491
Ord, R. L., & Lobo, C. A. (2015). Human Babesiosis: Pathogens, Prevalence, Diagnosis, and Treatment. Current Clinical Microbiology Reports, 2(4), 173-181. https://doi.org/10.1007/s40588-015-0025-z
Priya, N., & Punithavathy, E. (2022). A Review on Database and Transaction Models in Different Cloud Application Architectures. En S. Shakya, K.-L. Du, & W. Haoxiang (Eds.), Proceedings of Second International Conference on Sustainable Expert Systems (pp. 809-822). Springer Nature. https://doi.org/10.1007/978-981-16-7657-4_65
Qureshi, K. A., Parvez, A., Fahmy, N. A., Abdel Hady, B. H., Kumar, S., Ganguly, A., Atiya, A., Elhassan, G. O., Alfadly, S. O., Parkkila, S., & Aspatwar, A. (2023). Brucellosis: Epidemiology, pathogenesis, diagnosis and treatment–a comprehensive review. Annals of Medicine, 55(2). https://doi.org/10.1080/07853890.2023.2295398
Serin, H., & Körez, M. K. (2025). A Bibliometric Analysis of Research on Artificial Intelligence in Veterinary Medicine. Black Sea Journal of Agriculture, 8(3), 375-384. https://doi.org/10.47115/bsagriculture.1646312
Siqueira, F., & Davis, J. G. (2021). Service Computing for Industry 4.0: State of the Art, Challenges, and Research Opportunities. ACM Comput. Surv., 54(9), 188:1-188:38. https://doi.org/10.1145/3478680
Web API Search: Discover Web API and Its Endpoint with Natural Language Queries | SpringerLink. (s. f.). https://link.springer.com/chapter/10.1007/978-3-030-59618-7_7
Ybanez, R. H. D., Ybanez, A. P., Arnado, L. L. A., Belarmino, L. M. P., Malingin, K. G. F., Cabilete, P. B. C., Amores, Z. R. O., Talle, M. G., Liu, M., & Xuan, X. (2018). Detection of Ehrlichia, Anaplasma, and Babesia spp. In dogs of Cebu, Philippines. Veterinary World, 11(1), 14-19. https://doi.org/10.14202/vetworld.2018.14-19
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Wilson Molina-Oleas, Maritza Aguirre-Munizaga, Anthony Tatez-Luzardo, Erwin Marin-Fajardo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores conservan sus derechos de autor sin restricciones.
