Inteligencia Artificial aplicada a la eficiencia logística y exportación de la agroindustria: Revisión sistemática y análisis bibliométrico
DOI:
https://doi.org/10.17268/agroind.sci.2026.01.07Palabras clave:
IA, logística, exportaciones, alimento, cienciometría, bibliometríaResumen
El presente estudio analiza cómo la Inteligencia Artificial está transformando la eficiencia logística y las exportaciones en la agroindustria. Mediante una revisión sistemática de literatura científica (2020–2025) y un análisis bibliométrico con datos de Scopus, se identifican tecnologías como Machine Learning, Deep Learning, IoT y blockchain, las cuales están mejorando la trazabilidad, predicción de demanda y sostenibilidad en la cadena agroalimentaria. Los resultados muestran que países como China, India y Estados Unidos lideran la producción científica en este campo, mientras que regiones como Sudamérica enfrentan limitaciones por falta de infraestructura tecnológica. Las aplicaciones de inteligencia artificial abarcan desde monitoreo en tiempo real y control de calidad, hasta la predicción de cultivos y reducción de pérdidas. El estudio concluye que la inteligencia artificial fortalece la competitividad del sector agroindustrial en mercados internacionales. Se recomienda a los países en desarrollo invertir en infraestructura digital, promover la investigación local y capacitar al personal para cerrar brechas tecnológicas.
Citas
Abdikerimova, G., Yesbolova, A., Moldabekov, B., Kulanova, D., & Seidakhmetov, M. (2024). Economic assessment of the state of livestock industry in Kazakhstan: Prerequisites for the creation of a meat hub. Agricultural and Resource Economics: International Scientific E-Journal, 10(1), Article 1. https://doi.org/10.51599/are.2024.10.01.02
Addanki, M., Patra, P., & Kandra, P. (2022). Recent advances and applications of artificial intelligence and related technologies in the food industry. Applied Food Research, 2(2), 100126. https://doi.org/10.1016/j.afres.2022.100126
Ahamed, N. N., & Vignesh, R. (2022). Smart Agriculture and Food Industry with Blockchain and Artificial Intelligence. Journal of Computer Science, 18(1), 1-17. https://doi.org/10.3844/jcssp.2022.1.17
Alviz-Meza, A., Orozco-Agamez, J., Quinayá, D. C. P., & Alviz-Amador, A. (2023). Bibliometric Analysis of Fourth Industrial Revolution Applied to Material Sciences Based on Web of Science and Scopus Databases from 2017 to 2021. ChemEngineering, 7(1), Article 1. https://doi.org/10.3390/chemengineering7010002
Arriaga-Lorenzo, P., Maldonado-Simán, E., Ramírez-Valverde, R., Martínez-Hernández, P. A., Tirado-González, D. N., & Saavedra-Jiménez, L. A. (2024). MEAT COLD CHAIN MANAGEMENT IN MEXICAN SUPERMARKETS. Theory and Practice of Meat Processing, 9(2), 100-107. Scopus. https://doi.org/10.21323/2414-438X-2024-9-2-100-107
Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1), 63. https://doi.org/10.1007/s12525-023-00680-1
Basurto, A. E. L., & Cazorla, F. A. P. (2025). El impacto de la inteligencia artificial para la automatización en las cadenas de suministro de las empresas exportadoras de banano. Dominio de las Ciencias, 11(3), 1025-1046. https://doi.org/10.23857/dc.v11i3.4504
Ben Ayed, R., & Hanana, M. (2021). Artificial Intelligence to Improve the Food and Agriculture Sector. Journal of Food Quality, 2021(1), 5584754. https://doi.org/10.1155/2021/5584754
Bharathi S, V., Perdana ,Arif, Vivekanand ,T. S., Venkatesh ,V. G., Cheng ,Yang, & and Shi, Y. (2025). From ocean to table: Examining the potential of Blockchain for responsible sourcing and sustainable seafood supply chains. Production Planning & Control, 36(7), 950-969. https://doi.org/10.1080/09537287.2024.2321291
Chen, D., Jefferson, C., Hix, J., Qin, N., & Cao, Y. (2024). Exploring Generative Artificial Intelligence (GAI): Business Professionals’ Surveys and Perceptions on GAI. Journal of Behavioral and Applied Management, 24(2). https://doi.org/10.21818/001c.122143
Cortez-Clavo, L. K., Salazar-Muñoz, M. I., Morán-Santamaría, R. O., Cortez-Clavo, L. K., Salazar-Muñoz, M. I., & Morán-Santamaría, R. O. (2025). Digitalisation to Improve Automated Agro-Export Logistics: A Comprehensive Bibliometric Analysis. Sustainability, 17(10). https://doi.org/10.3390/su17104470
Dakhia, Z., Russo, M., & Merenda, M. (2025). AI-Enabled IoT for Food Computing: Challenges, Opportunities, and Future Directions. Sensors, 25(7), Article 7. https://doi.org/10.3390/s25072147
Dilmi, W., El Ferik, S., Ouerdane, F., Khaldi, M. K., & Saif, A.-W. A. (2025). Technical Aspects of Deploying UAV and Ground Robots for Intelligent Logistics Using YOLO on Embedded Systems. Sensors, 25(8), Article 8. https://doi.org/10.3390/s25082572
El Bhilat, E. M., El Jaouhari, A., & Hamidi, L. S. (2024). Assessing the influence of artificial intelligence on agri-food supply chain performance: The mediating effect of distribution network efficiency. Technological Forecasting and Social Change, 200, 123149. https://doi.org/10.1016/j.techfore.2023.123149
Fatorachian, H., & Pawar, K. (2025). Waste efficiency in cold supply chains through industry 4.0-enabled digitalisation. International Journal of Sustainable Engineering, 18(1), 2461564. https://doi.org/10.1080/19397038.2025.2461564
Ganeson, K., Mouriya, G. K., Bhubalan, K., Razifah, M. R., Jasmine, R., Sowmiya, S., Amirul, A.-A. A., Vigneswari, S., & Ramakrishna, S. (2023). Smart packaging − A pragmatic solution to approach sustainable food waste management. Food Packaging and Shelf Life, 36, 101044. https://doi.org/10.1016/j.fpsl.2023.101044
García-Infante, M., Castro-Valdecantos, P., Delgado-Pertíñez, M., Teixeira, A., Guzmán, J. L., & Horcada, A. (2024). Effectiveness of machine learning algorithms as a tool to meat traceability system. A case study to classify Spanish Mediterranean lamb carcasses. Food Control, 164, 110604. https://doi.org/10.1016/j.foodcont.2024.110604
Gascón, J., Larrea-Killinger, C., & Solà, C. (2023). Food Waste and Power Relations in the Agri-Food Chain. The Fruit Sector in Lleida (Catalonia, Spain). Journal of Agricultural and Environmental Ethics, 36(2), 13. https://doi.org/10.1007/s10806-023-09908-8
Gbashi, S., & Njobeh, P. B. (2024). Enhancing Food Integrity through Artificial Intelligence and Machine Learning: A Comprehensive Review. Applied Sciences, 14(8), Article 8. https://doi.org/10.3390/app14083421
Halder, S., Rafiqul Islam, M., Mamun, Q., Mahboubi, A., Walsh, P., & Zahidul Islam, M. (2025). A comprehensive survey on AI-enabled secure social industrial Internet of Things in the agri-food supply chain. Smart Agricultural Technology, 11, 100902. https://doi.org/10.1016/j.atech.2025.100902
Hill, J. (2024). Science, technology, and innovation in the dairy sector. International Journal of Food Science & Technology, 59(9), 6717-6723. https://doi.org/10.1111/ijfs.17385
Indriati, S. P., Saputro, D. R., & Widyaningsih, P. (2024). THE BIBLIOMETRIC NETWORK TO IDENTIFY RESEARCH TRENDS IN MULTI-INPUT TRANSFER FUNCTION. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(3), Article 3. https://doi.org/10.30598/barekengvol18iss3pp1931-1938
Kaushal, S., Tammineni, D. K., Rana, P., Sharma, M., Sridhar, K., & Chen, H.-H. (2024). Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances. Trends in Food Science & Technology, 146, 104408. https://doi.org/10.1016/j.tifs.2024.104408
Kemeç, A., & Altınay, A. T. (2023). Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability, 15(4), Article 4. https://doi.org/10.3390/su15043618
Kim, Y., & Kim, S. (2024). Automation and Optimization of Food Process Using CNN and Six-Axis Robotic Arm. Foods, 13(23), Article 23. https://doi.org/10.3390/foods13233826
Kumar, I., Rawat, J., Mohd, N., & Husain, S. (2021). Opportunities of Artificial Intelligence and Machine Learning in the Food Industry. Journal of Food Quality, 2021(1), 4535567. https://doi.org/10.1155/2021/4535567
Kyaw, K. N. C., Chao, K. C., & Inazumi, S. (2025). Integration of FEM-based permeation analysis and AI-based predictive models for improved chemical grout permeation assessment in heterogeneous soils. Results in Engineering, 26, 105071. https://doi.org/10.1016/j.rineng.2025.105071
Liu, Y., Guo, L., Hu, X., & Zhou, M. (2025). Sensor-Integrated Inverse Design of Sustainable Food Packaging Materials via Generative Adversarial Networks. Sensors, 25(11), Article 11. https://doi.org/10.3390/s25113320
Malibari, A., Alsawah, G., Saleh, W., & Lashin, M. M. A. (2023). Analysis of Attitudes towards Food Waste in the Kingdom of Saudi Arabia Using Fuzzy Logic. Sustainability (Switzerland), 15(4). Scopus. https://doi.org/10.3390/su15043668
Marndi, A., Ramesh, K. V., & Patra, G. K. (2021). Crop production estimation using deep learning technique. Current Science, 121(8), 1073. https://doi.org/10.18520/cs/v121/i8/1073-1079
Martinović, M., Dokic, K., & Pudić, D. (2025). Comparative Analysis of Machine Learning Models for Predicting Innovation Outcomes: An Applied AI Approach. Applied Sciences, 15(7), Article 7. https://doi.org/10.3390/app15073636
Memon, S. U. R., Pawase, V. R., Pavase, T. R., & Soomro, M. A. (2021). Investigation of COVID-19 Impact on the Food and Beverages Industry: China and India Perspective. Foods, 10(5), Article 5. https://doi.org/10.3390/foods10051069
Neethirajan, S. (2023). Artificial Intelligence and Sensor Technologies in Dairy Livestock Export: Charting a Digital Transformation. Sensors, 23(16), Article 16. https://doi.org/10.3390/s23167045
Olawale, R. A., Olawumi, M. A., & Oladapo, B. I. (2025). Sustainable farming with machine learning solutions for minimizing food waste. Journal of Stored Products Research, 112, 102611. https://doi.org/10.1016/j.jspr.2025.102611
Popa, C., Stefanov, O., & Goia, I. (2025). Multimodal Livestock Operations Analysis Using Business Process Modeling: A Case Study of Romanian Black Sea Ports. Economies, 13(3), Article 3. https://doi.org/10.3390/economies13030069
Puntel, L. A., Bolfe, É. L., Melchiori, R. J. M., Ortega, R., Tiscornia, G., Roel, A., Scaramuzza, F., Best, S., Berger, A. G., Hansel, D. S. S., Palacios Durán, D., & Balboa, G. R. (2022). How digital is agriculture in a subset of countries from South America? Adoption and limitations. Crop & Pasture Science, 74(6), 555-572. https://doi.org/10.1071/CP21759
Qian, C., Yang, H., Acharya, J., Liao, J., Ivanek, R., & Wiedmann, M. (2025). Initializing a Public Repository for Hosting Benchmark Datasets to Facilitate Machine Learning Model Development in Food Safety. Journal of Food Protection, 88(3), 100463. https://doi.org/10.1016/j.jfp.2025.100463
Rakholia, R., Suárez-Cetrulo, A. L., Singh, M., & Carbajo, R. S. (2025). AI-Driven Meat Food Drying Time Prediction for Resource Optimization and Production Planning in Smart Manufacturing. IEEE Access, 13, 22420-22428. https://doi.org/10.1109/ACCESS.2025.3534918
S, A., & Kathirvelan, J. (2025). Computer vision-based detection and classification of chemically ripened bananas and papayas at vendor site through deep learning AI models using real-time dataset. Results in Engineering, 26, 104730. https://doi.org/10.1016/j.rineng.2025.104730
Shahriar, S., Corradini, M. G., Sharif, S., Moussa, M., & Dara, R. (2025). The role of generative artificial intelligence in digital agri-food. Journal of Agriculture and Food Research, 20, 101787. https://doi.org/10.1016/j.jafr.2025.101787
Sharma, S., Gahlawat, V. K., Rahul, K., Mor, R. S., & Malik, M. (2021). Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics, 5(4), Article 4. https://doi.org/10.3390/logistics5040066
Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., Leksawasdi, N., & Phimolsiripol, Y. (2023). Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy, 13(5), Article 5. https://doi.org/10.3390/agronomy13051397
Tupan, J. M., Rieuwpassa, F., Setha, B., Latuny, W., & Goesniady, S. (2025). A Deep Learning Approach to Automated Treatment Classification in Tuna Processing: Enhancing Quality Control in Indonesian Fisheries. Fishes, 10(2), Article 2. https://doi.org/10.3390/fishes10020075
Vilas-Boas, J. L., Rodrigues, J. J. P. C., & Alberti, A. M. (2023). Convergence of Distributed Ledger Technologies with Digital Twins, IoT, and AI for fresh food logistics: Challenges and opportunities. Journal of Industrial Information Integration, 31, 100393. https://doi.org/10.1016/j.jii.2022.100393
Wepner, B., Neuberger, S., Hörlesberger, M., Molin, E. M., Lampert, J., & Koch, H. (2025). How can digitalisation support transformation towards sustainable agri-food systems? Scenario development in Lower Austria. Agricultural Systems, 224, 104251. https://doi.org/10.1016/j.agsy.2024.104251
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Nayelly Alvarado-Varas, Karla Zavaleta-Guzmán

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores conservan sus derechos de autor sin restricciones.
