Antimicrobial effect of peracetic acid compared to sodium hypochlorite in the disinfection of ready-to-eat lettuce (Lactuca sativa L.)

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.02.01

Palabras clave:

Lettuce, Peracetic acid, Hypochlorite, Disinfection, Ready-to-eat

Resumen

Ready-to-eat lettuces are highly demanded for salads but are exposed to factors that may pose health risks during production. There is an actual need to find alternatives to preserve fresh cut fruits and vegetables to improve the efficacy of the washing treatment. This study compared the antimicrobial effects of disinfection of raw ready-to-eat lettuce leaves with peracetic acid (CH3CO3H, PAA), sodium hypochlorite (NaClO) and washing with tap water. For disinfection, lettuce leaves were immersed in solutions of different concentration of PAA (40 and 80 ppm) and NaClO (100 and 150 ppm) for 2 min. The treated leaves were stored for 10 days under refrigeration (4 ºC). The aerobic plate count (APC), total coliforms, Salmonella spp. and total yeast and mold count (TYMC) were determined during this time. At the end of this period, samples treated with the lower PAA level had APC values like those obtained with both NaClO concentrations. The treatments with both disinfectants eliminated Salmonella spp., while the levels of APC, total coliforms and TYMC were below the limits of the Peruvian sanitary standard. It is concluded that PAA is a valid alternative to chlorine, and that higher concentrations could be used to achieve more significant population reductions.

Citas

M (2019). Guía interpretativa. Petrifilm TM. Placa de recuento de coliformes / E. coli. 3M España S.L.

Adams, M. R., Hartley, A. D., & Cox, L.J. (1989). Factors Affecting the efficacy of washing procedures used in the production of prepared salads. Food Microbiology, 6(2), 69–77.

Andrews, W. H., Wang, H., Jacobson, A., Ge, B., Zhang, G., & Hammack. (2023). Salmonella. In Bacteriological Analytical Manual (BAM). 8th ed. (Chapter 5) Maryland, USA: Food and Drug Administration.

Banach, J. L., Zwietering, M. H., & van der Fels-Klerx, H. J. (2021). Multi-criteria decision analysis to evaluate control strategies for preventing cross-contamination during fresh-cut lettuce washing. Food Control, 128, 108136.

Bellido Valencia, O., Alca, J. J., & Núñez Alberca, M. d. l. Á. (2022). Incidence of heavy metals in water, soil, alfalfa (Medicago sativa L.) and sheep (Ovis aries L.) along the Quilca - Vitor - Chili Basin in Arequipa, Peru. Carpathian Journal of Earth and Environmental Sciences, 17(1), 21–34.

Beuchat, L. R. (1999). Survival of enterohemorrhagic Escherichia coli O157:H7 in bovine feces applied to lettuce and the effectiveness of chlorinated water as a disinfectant. Journal of Food Protection 62(8), 845–849.

Beuchat, L. R., Adler, B. B., & Lang, M. M. (2004). Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on iceberg and romaine lettuce using simulated commercial processing conditions. Journal of Food Protection 67(6), 1238–1242.

Caceres, E., & Alca, J. J. (2016). Potential for energy recovery from a wastewater treatment plant. IEEE Latin America Transactions 14(7), 3316–3321.

Castro-Ibáñez, I., Gil, M. I., & Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT - Food Science and Technology, 85, 284–292.

Chaves, R. D., Martinez, R. C. R., Rezende, A. C. B., Rocha, M. D., Oteiza, J. M., & Sant’Ana, A. d. S. (2016). Salmonella and Listeria monocytogenes in ready-to-eat leafy vegetables. In P. Kotzekidou (Ed.), Food Hygiene and Toxicology in Ready-to-Eat Foods (pp. 123–149). San Diego: Academic Press.

Da Silva Felício, M. T., Hald, T., Liebana, E., Allende, A., Hugas, M., Nguyen-The, C., Johannessen, G. S., Niskanen, T., Uyttendaele, M., & McLauchlin, J. (2015). Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: Initial evaluation using outbreak data (2007–2011). International Journal of Food Microbiology, 195, 9–19.

de Mendiburu, F. (2023). Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-6.

Denyer, S. P., & Stewart, G. S. A. B. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation, 41(3), 261–268.

EFSA Panel on Biological Hazards (BIOHAZ) (2013). Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations). EFSA Journal, 11(1), 3025.

Feng, P., Weagant, S., Grant, M., & Burkhardt, W. (2020). Enumeration of Escherichia coli and the coliform bacteria. In Bacteriological Analytical Manual (BAM). 8th ed. (Chapter 4) Maryland, USA: Food and Drug Administration.

Gil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology, 134(1), 37–45.

Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2020). Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS data brief, 360, 1–8.

Ho, K. -l. G., Luzuriaga, D. A., Rodde, K. M., Tang, S., & Phan, C. (2011). Efficacy of a novel sanitizer composed of lactic acid and peroxyacetic acid against single strains of nonpathogenic Escherichia coli K-12, Listeria innocua, and Lactobacillus plantarum in aqueous solution and on surfaces of romaine lettuce and spinach. Journal of Food Protection, 74(9), 1468–1474.

Instituto Nacional de Estadística e Informática (2022). Perú: Enfermedades no transmisibles y transmisibles, 2021. Lima, Peru: Instituto Nacional de Estadística e Informática.

Jung, S., Yeo, D., Wang, Z., Woo, S., Seo, Y., Hossain, M. I., & Choi, C. (2023). Viability of SARS-CoV-2 on lettuce, chicken, and salmon and its inactivation by peracetic acid, ethanol, and chlorine dioxide. Food Microbiology, 110, 104164.

Kim, H., Ryu, J. -H., & Beuchat, L. R. (2006). Survival of Enterobacter sakazakii on fresh produce as affected by temperature, and effectiveness of sanitizers for its elimination. International Journal of Food Microbiology, 111(2), 134–143.

Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19–34.

Lopez-Galvez, F., Ragaert, P., Palermo, L. A., Eriksson, M., & Devlieghere, F. (2013). Effect of new sanitizing formulations on quality of fresh-cut iceberg lettuce. Postharvest Biology and Technology, 85, 102–108.

Maturin, L., & Peeler, J. T. (2021). Aerobic plate count. In: Bacteriological Analytical Manual (BAM). 8th ed (Chapter 3). Maryland, USA: Food and Drug Administration.

Nicolau-Lapeña, I., Abadias, M., Bobo, G., Aguiló-Aguayo, I., Lafarga, T., & Viñas, I. (2019). Strawberry sanitization by peracetic acid washing and its effect on fruit quality. Food Microbiology, 83, 159–166.

Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., & Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. International Journal of Food Microbiology, 285, 92–97.

Paco Choque, J. A., & Pizarro Medina, A. J. (2022). Propuesta de modelamiento hidráulico en la calidad del agua potable del circuito R-29 para la evaluación del cloro libre residual, distrito de Alto Selva Alegre, provincia de Arequipa, región de Arequipa. Arequipa, Peru: Universidad Nacional de San Agustín de Arequipa.

Parish, M., Beuchat, L., Suslow, T., Harris, L., Garrett, E., Farber, J., & Busta, F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 161–173.

Peru (2008). NTS Nº 071-MINSA/DIGESA-V.01: Norma Sanitaria Que Establece Los Criterios Microbiológicos de Calidad Sanitaria e Inocuidad Para Los Alimentos y Bebidas de Consumo Humano. Lima: Ministerio de Salud.

Prado-Silva, L., Cadavez, V., Gonzales-Barron, U., Rezende, A. C. B., & Sant’Ana, A. S. (2015). Meta-Analysis of the effects of sanitizing treatments on Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes inactivation in fresh produce. Applied and Environmental Microbiology, 81(23), 8008–8021.

R Core Team (2023). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Rico, D., Martín-Diana, A. B., Barat, J. M., & Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends in Food Science & Technology, 18(7), 373–386.

Signorell, A. (2023). DescTools: Tools for Descriptive Statistics. R package version 0.99.50.

Suslow, T. (1997). Postharvest chlorination: Basic properties & key points for effective distribution. Oakland, CA: University of California, Agriculture and Natural Resources.

Tournas, V., Stack, M. E., Mislivec, P. B., Koch, H. A., & Bandler, R. (2001). Yeasts, molds and mycotoxins. In Bacteriological Analytical Manual (BAM). 8th ed. (Chapter 18) Maryland, USA: Food and Drug Administration.

Truchado, P., Gil, M. I., & Allende, A. (2021). Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157:H7 in wash water. Food Microbiology, 100, 103866.

Vandekinderen, I., Devlieghere, F., De Meulenaer, B., Ragaert, P., & Van Camp, J. (2009). Optimization and evaluation of a decontamination step with peroxyacetic acid for fresh-cut produce. Food Microbiology, 26(8), 882–888.

Yuk, H. -G., Bartz, J. A., & Schneider, K. R. (2006). The effectiveness of sanitizer treatments in inactivation of Salmonella spp. from bell pepper, cucumber, and strawberry. Journal of Food Science, 71(3), M95–M99.

Descargas

Publicado

2025-05-11

Cómo citar

Rondón Saravia, G., Fernández Rivera, J. A., & Terán Sullca, H. C. (2025). Antimicrobial effect of peracetic acid compared to sodium hypochlorite in the disinfection of ready-to-eat lettuce (Lactuca sativa L.). Agroindustrial Science, 15(2), 99-105. https://doi.org/10.17268/agroind.sci.2025.02.01

Número

Sección

Artículos de investigación