Aminochelated and microparticulated zinc applied to citrus grown in calcareous soil

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.01.10

Palabras clave:

young trees, Citrus sinensis, chlorophyll, Zn concentration, growth

Resumen

The objective of this study was to evaluate the effect of foliar fertilization with alternative zinc (Zn) sources on the nutritional status and growth of young ´Valencia´ orange (Citrus sinensis L. Osbeck) trees grown in calcareous soil (pH = 8.1). Nine treatments were tested: the commercial amino chelates Aton Zn (0.3% and 0.5%) and Kelatex Zn Forte (0.5% and 1.0%); the commercial Zn microparticles Basfoliar Zn 75 Flo (0.1% and 0.2%); ZnSO4H2O (0.3% and 0.5%); and a control treatment with no Zn application. The Zn concentration in leaves increased with the application of Aton Zn (0.3%), Kelatex Zn Forte (0.5% and 1.0%), and ZnSO4H2O (0.3% and 0.5%). The Zn concentration in roots increased only in trees sprayed with Kelatex Zn Forte (1.0%). The chlorophyll index (SPAD readings) decreased in most treatments, except in leaves sprayed with ZnSO4H2O (0.3%) and Kelatex Zn Forte (1.0%). The N concentration in leaves increased with the application of ZnSO4H2O (0.5%), while P levels did not increase in any treatment. The foliar K concentration increased in trees sprayed with Aton Zn (0.3% and 0.5%), Basfoliar Zn 75 Flo (0.1%) and ZnSO4H2O (0.3%). The concentrations of Mn, Cu, and B in leaves remained unchanged across all treatments. Foliar Fe concentration increased in trees sprayed with Kelatex Zn Forte (0.5%) and ZnSO4H2O (0.3%). Zn application had no significant effect on tree growth. The amino chelate Kelatex Zn Forte at a 1.0% dose shows promising potential by increasing Zn concentrations in leaves and roots while maintaining the chlorophyll index.

Citas

Asadi, K. A., & Akhlaghi, A. N. (2020). Evaluation of growth rate and vegetative and physiological characteristics of Satsuma mandarin on C-35 rootstock in some calcareous soils. Iranian Journal of Soil Research, 34(2), 215–233. https://doi.org/10.22092/IJSR.2020.122521

Boaretto, R. M., Hippler, F. W. R., Teixeira L. A. J., Fornari, R. C., Quaggio, J. A., & Mattos, D. (2023) Zinc fertilizers for Citrus production: assessing nutrient supply via fertigation or foliar application. Plant and Soil, 496, 1–14. https://doi.org/10.1007/s11104-023-05969-w

Bolan, N., Srivastava, P., Rao, C. S., Satyanaraya, P. V., Anderson, G. C., Bolan, S., et al. (2023). Distribution, characteristics and management of calcareous soils. Advances in agronomy, 182, 81–130. https://doi.org/10.1016/bs.agron.2023.06.002

Bouain, N., Shahzad, Z., Rouached, A., Khan, G. A., Berthomieu, P., Abdelly, C., & Rouached, H. (2014). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 65(20), 5725–5741. https://doi.org/10.1093/jxb/eru314

Bremner, J. M. (1965). Total nitrogen. In: Methods of soil analysis. Part 2. Chemical and Microbiological Properties. A. G. Norman (ed.). American Society of Agronomy. Madison, WI, USA. pp: 1149–1178. https://doi.org/10.2134/agronmonogr9.2.c32

Clemens, S. (2022). The cell biology of zinc. Journal of Experimental Botany, 73(6), 1688–1698. https://doi.org/10.1093/jxb/erab481

Dawood, S. A., Meligy, M. S., & El-Hamady, M. M. (2001). Influence of Zn sulfate application on tree leaf and fruit characters of three young citrus varieties grown on slightly alkaline soil. Annals of Agriculture Science Moshtohor, 39(1), 433–447. https://doi.org/10.1080/01904167.2013.785567

Du, Y., Li, P., Nguyen, A. V., Xu, Z. P., Mulligan, D., & Huang, L. (2015). Zinc uptake and distribution in tomato plants in response to foliar supply of Zn hydroxide-nitrate nanocrystal suspension with controlled Zn solubility. Journal of Plant Nutrition and Soil Science, 178(5), 722–731. https://doi.org/10.1002/jpln.201400213

Fageria, V. D. (2001). Nutrient interactions in crop plants. Journal of plant nutrition, 24(8), 1269–1290. https://doi.org/10.1081/PLN-100106981

Fei, X. I. N. G., Fu, X. Z., Wang, N. Q., Xi J. L., Huang, Y., Wei, Z. H. O. U., & Peng, L. Z. (2016). Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). Journal of integrative agriculture, 15(4), 803–811. https://doi.org/10.1016/S2095-3119(15)61276-X

Fu, X. Z., Xing, F., Chao, L., Chun, C. P., Ling, L.L., Jiang, C. L., & Peng, L. Z. (2016). Effects of foliar application of various zinc fertilizers with organosilicone on correcting citrus zinc deficiency. HortScience, 51(4), 422–426. https://doi.org/10.21273/HORTSCI.51.4.422

Gaines, T. P., & Mitchell, G. A. (1979). Boron determination in plant tissue by the azomethine H method. Communications in Soil Science and Plant Analysis, 10(8), 1099–1108. https://doi.org/10.1080/00103627909366965

Gao, J., Zhuang, S., & Zhang, W. (2024). Advances in plant auxin biology: synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants, 13(17), 2523. https://doi.org/10.3390/plants13172523

Ghasemi, S., Khoshgoftarmanesh, A. H., Afyuni, M., & Hadadzadeh, H. (2013). The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 45, 68–74. https://doi.org/10.1016/j.eja.2012.10.012

Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15, 89–109. https://doi.org/10.1007/s11157-016-9390-1

Hamzah, S. M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. https://doi.org/10.3389/fpls.2022.1033092

Intrigliolo, F., Giuffrida, A., Rapisarda, P., Calabretta, M., & Roccuzzo, G. (2000). SPAD as an indicator of nitrogen status in Citrus. In: Proceeding of the IXth international citrus congress, Orlando, FL, USA, pp: 665–667.

Krouk, G., & Kiba, T. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Current Opinion in Plant Biology, 57, 104–109, https://doi.org/10.1016/j.pbi.2020.07.002

Kulig, B., Klimek-Kopyra, A., Ślizowska, A., Oleksy, A., Skowera, B., Lepiarczyk, A., & Grygierzec, W. (2024). A comparison of the methods used to assess the nutritional status of selected crop species. Journal of Water and Land Development, 1–10. https://doi.org/10.24425/jwld.2024.151784

Macedo, L. O., Mattos, D., Jacobassi, R. C., Petená, G., Quaggio, J. A., & Boaretto, R. M. (2021). Characterization and use efficiency of sparingly soluble fertilizer of boron and zinc for foliar application in coffee plants. Bragantia, 80, e3421. https://doi.org/10.1590/1678-4499.20200329

Makhasha, E., Al-Obeed, R. S., & Abdel-Sattar, M. (2024). Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc. Sustainability, 16(14), 6060. https://doi.org/10.3390/su16146060

Mirboloock, A., Rasouli, S. M., Sepehr, E., Lakzian, A., & Hakimi, M. (2021). Synthesized Zn (II)-amino acid and chitosan chelates to increase Zn uptake by bean (Phaseolus vulgaris) plants. Journal of Plant Growth Regulation, 40, 831–847. https://doi.org/10.1007/s00344-020-10151-y

Mosa, W. F., Ali, H. M., & Abdelsalam, N. R. (2021). The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environmental Science and Pollution Research, 28, 1983–1991. https://doi.org/10.1007/s11356-020-10658-7

Najizadeh, A., & Khoshgoftarmanesh, A. H. (2019). Effects of foliar applied zinc in the form of ZnSO4 and Zn-amino acid complexes on pistachio nut yield and quality. Journal of Plant Nutrition, 42(18), 2299–2309. https://doi.org/10.1080/01904167.2019.1655043

Nasir, M., Khan, A. S., Basra, S. A., & Malik, A. U. (2016). Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Scientia Horticulturae, 210, 227–235. https://doi.org/10.1016/j.scienta.2016.07.032

Obreza, T. A., Zekri, M., & Hanlon, E. A. (2020). Soil and leaf tissue testing. In: Morgan K. T., D and M. Kadyampakeni (eds.), Nutrition of Florida citrus trees (3rd ed.) SL458/SS671. EDIS: Florida, USA, pp: 23–32.

Ojeda, B. D. L., Perea, P. E., Hernández, R. O. A., Ávila, Q. G., Abadía, J., & Lombardini, L. (2014). Foliar fertilization with zinc in pecan trees. HortScience, 49(5), 562–566. https://doi.org/10.21273/HORTSCI.49.5.562

Oliveira, M. L., Mattos, J. D., Jacobassi, R., Rieger, H. F. W., Quaggio, J. A., & Boraetto, R. M. (2020). Efficiency of foliar application of sparingly soluble sources of boron and zinc in citrus. Scientia Agricola, 78(1), e20180387. https://doi.org/10.1590/1678-992X-2018-0387

Prasad, R., Shivay, Y. S., & Kumar, D. (2016). Interactions of zinc with other nutrients in soils and plants-A Review. Indian Journal of Fertilizers, 12, 16–26.

Rafie, M. R., Khoshgoftarmanesh, A. H., Shariatmadari, H., & Darabi, A. (2023). Apoplastic and symplastic zinc concentration of intact leaves of field onion (Allium cepa) as affected by foliar application of ZnSO4 and Zn-amino chelates. Journal of Plant Nutrition, 46(5), 731–742. https://doi.org/10.1080/01904167.2022.2044046

Sourati, R., Sharifi, P., Poorghasemi, M., Alves Vieira, E., Seidavi, A., Anjum, N. A., et al. (2022). Effects of naphthaleneacetic acid, indole-3-butyric acid and zinc sulfate on the rooting and growth of mulberry cuttings. International Journal of Plant Biology, 13(3), 245–256. https://doi.org/10.3390/ijpb13030021

Souri, K. M., & Hatamian, M. (2019). Aminochelates in plant nutrition: a review. Journal of Plant Nutrition, 42(1), 67–78. https://doi.org/10.1080/01904167.2018.1549671

Srivastava, A. K., & Singh, S. (2005). Zinc nutrition, a global concern for sustainable citrus production. Journal of Sustainable Agriculture, 25(3), 5–42. https://doi.org/10.1300/J064v25n03_03

Umair, H., Aamer, M., Umer, C. M., Haiying, M., Shahzad, T., Barbanti, B., et al. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396

Xie, R., Zhao, J., Lu, L., Brown, P., Guo, J., & Tian, S. (2020). Penetration of foliar-applied Zn and its impact on apple plant nutrition status: in vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Horticulture research, 7, 147. https://doi.org/10.1038/s41438-020-00369-y

Zekri, M., & Obreza, T. (2003). Micronutrient deficiencies in citrus: iron, zinc and manganese. EDIS. SL 204. EDIS. (2). https://doi.org/10.32473/edis-ss423-2003

Publicado

2025-04-27

Cómo citar

Martínez-Ríos, O., Cortés-Flores, J. I., López-Jiménez, A., Etchevers-Barra, J. D., & Contreras-Soto, M. B. (2025). Aminochelated and microparticulated zinc applied to citrus grown in calcareous soil. Agroindustrial Science, 15(1), 89-97. https://doi.org/10.17268/agroind.sci.2025.01.10

Número

Sección

Artículos de investigación