In vitro evaluation of the antagonism of Trichoderma strains against foliar phytopathogenic fungi of banana crops (Musa spp.)
DOI:
https://doi.org/10.17268/agroind.sci.2025.02.06Keywords:
Antagonism, inhibition, Neocordana, Phoma, TrichodermaAbstract
In Ecuador, bananas are the second most important export product after oil and a key pillar of its economy. However, their production faces phytosanitary challenges, primarily the attack of foliar diseases caused by phytopathogenic fungi, traditionally controlled through the application of chemical fungicides. This study evaluated, under in vitro conditions, the antagonism of three Trichoderma strains (T. harzianum, T. asperellum, and T. sp.) against Neocordana musicola and Phoma musae, pathogens isolated from diseased leaves collected in the province of Santo Domingo de los Tsáchilas, Ecuador. The trials were evaluated using dual cultures, quantifying mycelial growth and the degree of competition for space. A completely randomized design (CRD) with an axb factorial arrangement and two controls was used. Based on the results, the highest percentage of inhibition corresponds to T. harzianum against Neocordana musicola with 97.6% and T. harzianum against Phoma musae with 78.6%, followed by T. asperellum against Neocordana musicola with 76.8% and T. asperellum against Phoma musae with 46.6%. In comparison, T. sp. registered the lowest percentages, being 39.4% against Neocordana musicola and 35%,4 against Phoma musae. These results demonstrate the potential of Trichoderma harzianum as a biological control agent.
References
Acosta-Suárez, M., Pichardo, T., Roque, B., Cruz- Martín, M., Mena, E., Leiva-Mora, M., … Alvarado- Capó, Y. (2013). Antagonismo in vitro de Trichoderma harzianum Rifai contra Mycosphaerella fijiensis Morelet. Biotecnología Vegetal, 13(4), 1–5.
AGROCALIDAD. (2018). Toma de muestra para el laboratorio de biología molecular – diagnóstico vegetal. Recuperado de https://www.agrocalidad.gob.ec/wp-content/uploads/2020/05/tra4.pdf
Arzate-Vega, J., Michel-Aceves, A. C., Domínguez-Márquez, V. M., & Santos-Eméstica, O. A. (2006). Antagonismo de Trichoderma spp. sobre Mycosphaerella fijiensis Morelet, Agente Causal de la Sigatoka Negra del Plátano (Musa sp.) in vitro e Invernadero. Revista Mexicana de Fitopatología, 24(2), 98–104.
Cavero, P. A. S., Hanada, R. E., Gasparotto, L., Neto, R. A. C., & de Souza, J. T. (2015). Controle biológico da Sigatoka-negra da bananeira com Trichoderma. Ciencia Rural, 45(6), 951–957. https://doi.org/10.1590/0103-8478cr20140436
Cervantes Alava, A. R., Lalangui Paucar, Y., Sánchez Urdaneta, A. B., Colmenares de Ortega, C. B., & Jaramillo Aguilar, E. E. (2020). Evaluación del desarrollo de micelios de Mycosphaerella fijiensis Morelet, recolectados en el centro y lindero en plantación de Musa sp. AAA. Revista Metropolitana de Ciencias Aplicadas, 3(3). Recuperado de https://orcid.org/0000-0002-0688-9432
Churchill, A. C. L. (2011). Mycosphaerella fijiensis, the black leaf streak pathogen of banana: Progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Molecular Plant Pathology, 12(4), 307–328. https://doi.org/10.1111/j.1364-3703.2010.00672.x
Cortés Hernández, F. del C., Alvarado Castillo, G., & Sanchez Viveros, G. (2023). Trichoderma spp., una alternativa para la agricultura sostenible: una revisión. Revista Colombiana de Biotecnología, 25(2), 73–87. https://doi.org/10.15446/rev.colomb.biote.v25n2.111384
De Gruyter, J., & Crous, P. W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity, 15, 1–18.
Debasish, D., Ahamed, K., & Nrisingha, D. (2020). Phoma diseases: Epidemiology and control. Plant Pathology, 69(7), 1203–1217. https://doi.org/10.1111/ppa.13221
Ezziyyani, M., Requena, M. E., Egea-Gilabert, C., & Candela, M. E. (2007). Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155(6), 342–349. https://doi.org/10.1111/j.1439-0434.2007.01237.x
García Sánchez, H. M., Jaramillo Aguilar, E. E., & Herrera Reyes, S. N. (2022). Fungicidas a base de azufre y Bacillus sp. En manejo integrado de Sigatoka Negra. Agroecosistemas, 10(3), 153–158.
Hernández-Restrepo, M., Groenewald, J. Z., & Crous, P. W. (2015). Neocordana gen. nov.,the causal organism of Cordana leaf spot on banana. Phytotaxa, 205(4), 229–238. https://doi.org/10.11646/phytotaxa.205.4.2
Hou, L. W., Groenewald, J. Z., Pfenning, L. H., Yarden, O., Crous, P. W., & Cai, L. (2020). The phoma-like dilemma. Studies in Mycology, 96, 309–396. https://doi.org/10.1016/j.simyco.2020.05.001
INEC. (2024). Encuesta de Superficie y Producción Agropecuaria Continua (ESPAC).
InfoStat. (2020). InfoStat. Recuperado de https://www.infostat.com.ar/index.php?mod=page&id=15
Mayorga Morejón, K. R., Solís Hidalgo, Z. K., Terrero Yépez, P. I., & Hoyos Montesdeoca, M. Á. (2024). Interacciones antagónicas entre Trichoderma spp. y Fusarium oxysporum f. sp. cubense R1: un estudio in vitro sobre competencia y antibiosis. Revista De Producción, Ciencias E Investigación, 8(54), 12–23. https://doi.org/https://doi.org/10.29018/issn.2588-1000vol8iss54.2024pp12-23
Mejía, L. C., Rojas, E. I., Maynard, Z., Bael, S. Van, Arnold, A. E., Hebbar, P., … Herre, E. A. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46(1), 4–14. https://doi.org/10.1016/j.biocontrol.2008.01.012
OEB. (2024). Análisis trimestral enero-junio 2024 comercio exterior. Ministerio de Producción,Comercio Exterior, Inversiones y Pesca. Ecuador.
Paladines-Montero, A., León-Reyes, A., Ramirez-Villacis, D. X., & Zapata-Ramón, C. G. (2022). Caracterización del microbioma foliar de banano y su variación en presencia del patógeno Sigatoka Negra (Pseudocercospora fijiensis). ACI Avances En Ciencias e Ingenierías, 14(1). https://doi.org/10.18272/aci.v14i1.2299
Rodríguez-García, D., & Wang-Wong, A. (2020). Efectividad a nivel in vitro de Trichoderma spp. nativos e importados contra Fusarium oxysporum. Agronomía Costarricense, 44(2), 109–125. https://doi.org/https://doi.org/10.15517/RAC.V44I2.43096
Samarakoon, B. C., Wanasinghe, D. N., Jeewon, R., & Tian, Q. (2019). The plant pathogenic genus Neocordana. Plant Pathology & Quarantine, 9(1), 139–151. https://doi.org/10.5943/ppq/9/1/12
Samuels, G. J., Ismaiel, A., Bon, M. C., De Respinis, S., & Petrini, O. (2010). Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia, 102(4), 944–966. https://doi.org/10.3852/09-243
Urdaneta, L., Delgado, A., Sosa, L., & Piñeiro, A. (2002). Micobiota del filoplano en plátano Harton (Musa AAB), en el municipio Francisco Javier Pulgar del estado Zulia, Venezuela. Revista de La Facultad de Agronomía, 19(2).
Vargas Vera, R. H. (2014). Antagonismo de Trichoderma koningiopsis y Trichoderma harzianum sobre Fusarium oxysporum f. sp. cepae y Phoma terrestris in vitro. Tesis de grado. Universidad Nacional de San Agustin de Arequipa. Arequipa.
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40(1), 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Eliana Granja Guerra, José Tituaña Peralta, Darwin Claudio Pruna, Valeria Sotelo Erazo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores conservan sus derechos de autor sin restricciones.