Influence of ethanolic extract of pineapple (Ananas comosus) peel on the inhibition of enzymatic browning and preservation of organoleptic properties of canchan potato (Solanum tuberosum L.)
DOI:
https://doi.org/10.17268/agroind.sci.2025.01.09Keywords:
ethanolic extract, enzymatic browning, pineapple peel, natural extract, sensorial analysisAbstract
Chemical-synthetic methods have been developed to preserve the organoleptic properties of potatoes, but their consumption may be harmful to health. Therefore, this research aims to evaluate the preservation capacity of ethanolic extract from the peel of Golden variety pineapple at different concentrations (3%, 7%, 10%, and 15%), compared to solutions of 0.1% sodium metabisulfite, 0.1% citric acid, 0.1% ascorbic acid, and a control sample of untreated potatoes. The study assesses the organoleptic characteristics and the effect of these treatments on enzymatic browning in Canchan variety potatoes over 14 days of observation. The CIElab* color parameters and ∆E were measured at 0, 3, 7, 10, and 14 days, respectively. Additionally, a sensory analysis was conducted, in which nine trained panelists determined the sensory profiles (quality and defects) and the acceptability of each treatment. The results showed that the extracts had a positive effect on color preservation, with the 10% and 15% extracts yielding the best results; however, these treatments exhibited low preservation of the characteristic potato flavor.
References
AL-abbasy, O. Y., Ali, W. I., & Al-lehebe, N. I. (2021). Inhibition of enzymatic browning in fruit and vegetable, review. Samarra Journal of Pure and Applied Science, 3(1), 56-73.
Alimohammadi, A., Moosavy, M.-H., Doustvandi, M. A., Baradaran, B., Amini, M., Mokhtarzadeh, A., & de la Guardia, M. (2021). Sodium metabisulfite as a cytotoxic food additive induces apoptosis in HFFF2 cells. Food Chemistry, 358, 129910. https://doi.org/10.1016/j.foodchem.2021.129910
Bobo, G., Arroqui, C., & Virseda, P. (2021). Natural plant extracts as inhibitors of potato polyphenol oxidase: The green tea case study. LWT, 153, 112467. https://doi.org/10.1016/j.lwt.2021.112467
Bobo-García, G., Arroqui, C., Merino, G., & Vírseda, P. (2019). Antibrowning Compounds for Minimally Processed Potatoes: A Review. Food Reviews International, 36(5), 529-546. https://doi.org/10.1080/87559129.2019.1650761
Burgos, G., Zum Felde, T., Andre, C., & Kubow, S. (2020). The Potato and Its Contribution to the Human Diet and Health. En H. Campos, & O. Ortiz (Eds.), The potato crop (pp. 37-74). Springer. https://doi.org/10.1007/978-3-030-28683-5
Cairone, F., Carradori, S., Locatelli, M., Casadei, M. A., & Cesa, S. (2019). Reflectance colorimetry: a mirror for food quality-a mini review. European Food Research and Technology, 246(2), 259-272. https://doi.org/10.1007/s00217-019-03345-6
Casado Vela, J. (2004). Aproximación cinética, molecular y proteómica al estudio de podredumbre apical en frutos de tomate ("Lycopersicon esculentum" m.). Implicación de polifenol oxidasa (PPO) y enzimas antioxidantes. [Tesis de doctorado, Universidad de Alicante].
El Peruano (2024, 21 de julio). Día del Pollo a la Brasa: Hay cerca de 13,000 pollerías en todo el país. Diario Oficial El Peruano. https://elperuano.pe/noticia/248357-dia-del-pollo-a-la-brasa-hay-cerca-de-13000-pollerias-en-todo-el-pais
Gong, Y., Qingguo, R., Ma, S., Ma, Y., Meng, Q., Zhang, Z., & Shi, J. (2019). Short-time water immersion inhibits the browning of fresh-cut potato by enhancing antioxidant capability and tyrosine scavenging. Journal of Food Processing and Preservation, 43(11). https://doi.org/10.1111/jfpp.14168
Hamdan, N., Lee, C. H., Wong, S. L., Fauzi, C. E. N. C. A., Zamri, N. M. A., & Lee, T. H. (2022). Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules. 27(3), 1101. https://doi.org/10.3390/molecules27031101
Hunjek, D. D., Pranjić, T., Repajić, M., & Levaj, B. (2020). Fresh‐cut potato quality and sensory: Effect of cultivar, age, processing, and cooking during storage. Journal Of Food Science, 85(8), 2296-2309. https://doi.org/10.1111/1750-3841.15353
Lai, M. C., Hung, T. Y., Lin, K. M., Sung, S. P., Wu, S. J., Yang, C. S., Wu, Y.-J., Tsai, J.-J., Wu, S.-N. & Huang, C. W. (2017). Sodium Metabisulfite: Effects on Ionic Currents and Excitotoxicity. Neurotoxicity Reasearch, 34, 1-15. https://doi.org/10.1007/s12640-017-9844-4
Liu, X., Yang, Q., Lu, Y., Li, Y., Li, T., Zhou, B., & Qiao, L. (2019). Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage. Food Chemistry, 283, 445 - 453. https://doi.org/10.1016/j.foodchem.2019.01.058
Michael Eskin, N. A., Ho, C. T. & Shahidi, F. (2013). Browning Reactions in Foods. En N. A. Michael Eskin & F. Shahidi (Eds), Biochemistry of Foods (3a ed., pp. 245-289). Academic Press. https://doi.org/10.1016/B978-0-08-091809-9.00006-6
Ministerio de Desarrollo Agrario y Riego. (2022). En el día nacional, el Perú libera la producción de papa en América Latina. https://www.gob.pe/institucion/midagri/noticias/612374-midagri-en-el-dia-nacional-el-peru-lidera-la-produccion-de-papa-en-america-latina
Mohsin, A., Jabeen, A., Majid, D., Allai, F. M., Dar, A. H., Gulzar, B. & Makroo, A. (2020). Pineapple. En G. A. Nayik & A. Gull (Eds), Antioxidants in Fruits: Properties and Health Benefits (pp 379-396). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-7285-2_19
New Jersey Department of Health. (2005). Hoja informativa sobre sustancias peligrosas: Metabisulfito de sodio. https://www.nj.gov/health/eoh/rtkweb/documents/fs/1708sp.pdf
Qiao, L., Wang, H., Shao, J., Lu, L., Tian, J., & Liu, X. (2021). A novel mitigator of enzymatic browning—hawthorn leaf extract and its application in the preservation of fresh-cut potatoes. Food Quality and Safety, 5. https://doi.org/10.1093/fqsafe/fyab015
R. M., Lokollo, R. R., Utami, P., Jesajas, H., & Moniharapon, M. (2024). Pelatihan pembuatan minuman probiotik fermentasi dari limbah kulit nanas (Ananas comosus L.) di Desa Seruawan. INDRA Jurnal Pengabdian Kepada Masyarakat, 5(2), 60-65. https://doi.org/10.29303/indra.v5i2.376
Roda, A. & Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. International Journal of Food Science & Technology, 54(4), 1009-1017. https://doi.org/10.1111/ijfs.14128
Sistema Integrado de Estadística Agraria. (2024). Boletín Estadístico mensual el Agro en Cifras. Ministerio de Desarrollo Agrario y Riego. Gob.pe. https://cdn.www.gob.pe/uploads/document/file/5941243/4024332-boletin-mensual-el-agro-en-cifras-diciembre-2023.pdf?v=1710003696
Vidinamo, F., Fawzia, S., & Karim, M. A. (2021). Investigation of the Effect of Drying Conditions on Phytochemical Content and Antioxidant Activity in Pineapple (Ananas comosus). Food And Bioprocess Technology, 15(1), 72-81. https://doi.org/10.1007/s11947-021-02715-x
Voyer, Luis E, & Alvarado, Caupolicán. (2019). Reacción de Maillard: Efectos patogénicos. Medicina (Buenos Aires), 79(2), 137-143.
Wardanis, P., Zulkifli, Z., Lande, M. L., & Nurcahyani, E. (2019). Efektivitas ekstrak daging buah nanas (Ananas comosus L.) dalam penurunan indeks browning dari umbi kentang(Solanum tuberosum l.). Jurnal Penelitian Pertanian Terapan, 19(2), 152-158. https://doi.org/10.25181/jppt.v19i2.1568
Watts, B.M., Ylimaki, G.L., Jeffery, L.E., & Elías, L.G. (1992). Métodos sensoriales básicos para la evaluación de alimentos. Centro Internacional de Investigaciones para el desarrollo.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yulissa Pata Huaracallo, Yuria Tahara, Geraldyne Moran Flores, José Barrera, Daniel Pariona-Velarde

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores conservan sus derechos de autor sin restricciones.