Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.03.05

Palabras clave:

Oriza sativa, remote sensing, multispectral imagery, machine learning, breeding

Resumen

Rice is a globally important crop and a staple in the diet of a large part of the world’s population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria

Citas

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 19(1), 52–61. https://doi.org/10.1016/j.tplants.2013.09.008

Ata-Ul-Karim, S. T., Begum, H., Lopena, V., Borromeo, T., Virk, P., Hernandez, J. E., Gregorio, G. B., Collard, B. C. Y., & Kato, Y. (2022). Genotypic variation of yield-related traits in an irrigated rice breeding program for tropical Asia. Crop and Environment, 1(3), 173–181. https://doi.org/10.1016/j.crope.2022.08.004

Boomsma, C. R., Santini, J. B., West, T. D., Brewer, J. C., McIntyre, L. M., & Vyn, T. J. (2010). Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil and Tillage Research, 106(2), 227–240. https://doi.org/10.1016/j.still.2009.12.006

Cantrell, R. P., & Reeves, T. G. (2002). The Cereal of the World’s Poor Takes Center Stage. Science, 296(5565), 53–53. https://doi.org/10.1126/science.1070721

Caribou Space, D. T. (2022). Regional and National Rice Production Forecasting in Peru (IPP Case Study). https://www.spacefordevelopment.org/library/regional-and-nationalrice-production-forecasting-in-peru-ipp-case-study/

Chen, R., Lu, H., Wang, Y., Tian, Q., Zhou, C., Wang, A., Feng, Q., Gong, S., Zhao, Q., & Han, B. (2024). High-throughput UAV-based rice panicle detection and genetic mapping of heading-date-related traits. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1327507

Christiansen, M., Laursen, M., Jørgensen, R., Skovsen, S., & Gislum, R. (2017). Designing and Testing a UAV Mapping System for Agricultural Field Surveying. Sensors, 17(12), 2703. https://doi.org/10.3390/s17122703

Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. https://doi.org/10.1016/S0176-1617(99)80314-9

de Mendiburu, F. (2023). agricolae: Statistical Procedures for Agricultural Research. https://cran.r-project.org/web/packages/agricolae/%0Aagricolae.pdf

Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., & Moore, B. (2015). Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 160, 99–113. https://doi.org/10.1016/j.rse.2015.01.004

Duan, J., Wang, H., Yang, Y., Cheng, M., & Li, D. (2025). Rice Growth Parameter Estimation Based on Remote Satellite and Unmanned Aerial Vehicle Image Fusion. Agriculture, 15(10), 1026. https://doi.org/10.3390/agriculture15101026

Ge, H., Ma, F., Li, Z., & Du, C. (2021). Grain Yield Estimation in Rice Breeding Using Phenological Data and Vegetation Indices Derived from UAV Images. Agronomy, 11(12), 2439. https://doi.org/10.3390/agronomy11122439

Giménez-Gallego, J., González-Teruel, J. D., Soto-Valles, F., Jiménez-Buendía, M., Navarro-Hellín, H., & Torres-Sánchez, R. (2021). Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Computers and Electronics in Agriculture, 188, 106319. https://doi.org/10.1016/j.compag.2021.106319

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7

Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8). https://doi.org/10.1029/2005GL022688

Gitelson, A., & Merzlyak, M. N. (1994). Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3), 286–292. https://doi.org/10.1016/S0176-1617(11)81633-0

Goigochea-Pinchi, D., Justino-Pinedo, M., Vega-Herrera, S. S., Sanchez-Ojanasta, M., Lobato-Galvez, R. H., Santillan-Gonzales, M. D., Ganoza-Roncal, J. J., Ore-Aquino, Z. L., & Agurto-Piñarreta, A. I. (2024). Yield Prediction Models for Rice Varieties Using UAV Multispectral Imagery in the Amazon Lowlands of Peru. AgriEngineering, 6(3), 2955–2969. https://doi.org/10.3390/agriengineering6030170

He, N., Zhan, G., Huang, F., Abou-Elwafa, S. F., & Yang, D. (2022). Fine Mapping and Cloning of a Major QTL qph12, Which Simultaneously Affects the Plant Height, Panicle Length, Spikelet Number and Yield in Rice (Oryza sativa L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.878558

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

INIA. (2024). Programa nacional de arroz. https://www.inia.gob.pe/pn-arroz/

Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://cran.r-project.org/package=factoextra

Kawamura, K., Asai, H., Yasuda, T., Khanthavong, P., Soisouvanh, P., & Phongchanmixay, S. (2020). Field phenotyping of plant height in an upland rice field in Laos using low-cost small unmanned aerial vehicles (UAVs). Plant Production Science, 23(4), 452–465. https://doi.org/10.1080/1343943X.2020.1766362

Khush, G. S. (2013). Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breeding, 132(5), 433–436. https://doi.org/10.1111/pbr.1991

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5). https://doi.org/10.18637/jss.v028.i05

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR : An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1). https://doi.org/10.18637/jss.v025.i01

Li J, Li J, Zhao D, Cao Q, Yu F, Cao Y, Feng S and Xu T (2025) High-throughput method for improving rice AGB estimation based on UAV multi-source remote sensing image feature fusion and ensemble learning. Frontier in Plant Science. 16.1576212. https://doi.org/10.3389/fpls.2025.1576212Lu, W., Okayama, T., & Komatsuzaki, M. (2021). Rice Height Monitoring between Different Estimation Models Using UAV Photogrammetry and Multispectral Technology. Remote Sensing, 14(1), 78. https://doi.org/10.3390/rs14010078

Lyu, S., Noguchi, N., Ospina, R., & Kishima, Y. (2021). Development of phenotyping system using low altitude UAV imagery and deep learning. International Journal of Agricultural and Biological Engineering, 14(1), 207–215. https://doi.org/10.25165/j.ijabe.20211401.6025

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714

Ohe, M., & Mimoto, H. (2002). Appropriate Time of Deep-Water Treatment for Regulation of Rice Growth. Japanese Journal of Crop Science, 71(3), 335–342. https://doi.org/10.1626/jcs.71.335

Peñuelas, J., Gamon, J. A., Griffin, K. L., & Field, C. B. (1993). Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment, 46(2), 110–118. https://doi.org/10.1016/0034-4257(93)90088-F

Quille-Mamani, J., Porras-Jorge, R., Saravia-Navarro, D., Valqui-Valqui, L., Herrera, J., Chávez-Galarza, J., & Arbizu, C. I. (2022). Assessment of vegetation Índices derived from UAV images for predicting biometric variables in bean during ripening stage. Idesia (Arica), 40(2), 39–45. https://doi.org/10.4067/S0718-34292022000200039

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing, Vienna, Austria.

Reynolds, M., Chapman, S., Crespo-Herrera, L., Molero, G., Mondal, S., Pequeno, D. N. L., Pinto, F., Pinera-Chavez, F. J., Poland, J., Rivera-Amado, C., Saint Pierre, C., & Sukumaran, S. (2020). Breeder friendly phenotyping. Plant Science, 295, 110396. https://doi.org/10.1016/j.plantsci.2019.110396

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7

Rosero, M. (1983). Sistema de Evaluación Estandar para Arroz. Centro Internacional de Agricultura Tropical (CIAT).

Shearman, J. R., Vejchasarn, P., Naktang, C., Phansenee, Y., Jomchai, N., Lanceras-Siangliw, J., Tangphatsornruang, S., & Toojinda, T. (2022). Rice height QTLs in KDML105 chromosome segment substitution lines. Genomics, 114(1), 482–487. https://doi.org/10.1016/j.ygeno.2019.09.003

Sulik, J. J., & Long, D. S. (2016). Spectral considerations for modeling yield of canola. Remote Sensing of Environment, 184, 161–174. https://doi.org/10.1016/j.rse.2016.06.016

Takai, T. (2024). Potential of rice tillering for sustainable food production. Journal of Experimental Botany, 75(3), 708–720. https://doi.org/10.1093/jxb/erad422

Takai, T., Taniguchi, Y., Takahashi, M., Nagasaki, H., Yamamoto, E., Hirose, S., Hara, N., Akashi, H., Ito, J., Arai‐Sanoh, Y., Hori, K., Fukuoka, S., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Kawamura, K., Asai, H., Ishizaki, T., … Uga, Y. (2023). MORE PANICLES 3 , a natural allele of OsTB1/FC1 , impacts rice yield in paddy fields at elevated CO2 levels. The Plant Journal, 114(4), 729–742. https://doi.org/10.1111/tpj.16143

Tan, S., Lu, H., Yu, J., Lan, M., Hu, X., Zheng, H., Peng, Y., Wang, Y., Li, Z., Qi, L., & Ma, X. (2023). In-field rice panicles detection and growth stages recognition based on RiceRes2Net. Computers and Electronics in Agriculture, 206, 107704. https://doi.org/10.1016/j.compag.2023.107704

Tanaka, T. S. T., Wang, S., Jørgensen, J. R., Gentili, M., Vidal, A. Z., Mortensen, A. K., Acharya, B. S., Beck, B. D., & Gislum, R. (2024). Review of Crop Phenotyping in Field Plot Experiments Using UAV-Mounted Sensors and Algorithms. Drones, 8(6), 212. https://doi.org/10.3390/drones8060212

Wan, L., Zhang, J., Dong, X., Du, X., Zhu, J., Sun, D., Liu, Y., He, Y., & Cen, H. (2021). Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model. Computers and Electronics in Agriculture, 187, 106304. https://doi.org/10.1016/j.compag.2021.106304

Yamagishi, Y., Kato, Y., Ninomiya, S., & Guo, W. (2022). Image-Based Phenotyping for Non-Destructive In Situ Rice (Oryza sativa L.) Tiller Counting Using Proximal Sensing. Sensors, 22(15), 5547. https://doi.org/10.3390/s22155547

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., Zhang, R., Feng, H., Zhao, X., Li, Z., Li, H., & Yang, H. (2017). Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01111

Yang, Q., Shi, L., Han, J., Zha, Y., & Zhu, P. (2019). Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Research, 235, 142–153. https://doi.org/10.1016/j.fcr.2019.02.022

Yue, J., Yang, G., Tian, Q., Feng, H., Xu, K., & Zhou, C. (2019). Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 226–244. https://doi.org/10.1016/j.isprsjprs.2019.02.022

Zang, Y., Yao, Y., Xu, Z., Wang, B., Mao, Y., Wang, W., Zhang, W., Zhang, H., Liu, L., Wang, Z., Liang, G., Yang, J., Zhou, Y., & Gu, J. (2022). The Relationships among “STAY-GREEN” Trait, Post-Anthesis Assimilate Remobilization, and Grain Yield in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 23(22), 13668. https://doi.org/10.3390/ijms232213668

Zhang, Z., Sun, X., Ma, X., Xu, B., Zhao, Y., Ma, Z., Li, G., Khan, N. U., Pan, Y., Liang, Y., Zhang, H., Li, J., & Li, Z. (2021). GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice. The Crop Journal, 9(1), 57–67. https://doi.org/10.1016/j.cj.2020.04.011

Zhao, X., Nishina, K., Akitsu, T. K., Jiang, L., Masutomi, Y., & Nasahara, K. N. (2023). Feature-based algorithm for large-scale rice phenology detection based on satellite images. Agricultural and Forest Meteorology, 329, 109283. https://doi.org/10.1016/j.agrformet.2022.109283

Zhou, H., Huang, F., Lou, W., Gu, Q., Ye, Z., Hu, H., & Zhang, X. (2025). Yield prediction through UAV-based multispectral imaging and deep learning in rice breeding trials. Agricultural Systems, 223, 104214. https://doi.org/10.1016/j.agsy.2024.104214

Descargas

Publicado

2025-09-29

Cómo citar

Goigochea-Pinchi, D., Torres-Chavez, E. E., Vega-Herrera, S. S., Archentti-Reategui, F., Barrera-Torres, C., Dominguez-Yap, P. L., Ysuiza-Perez, A., Perez-Tello, M., Rios-Rios, R., Santillan-Gonzáles, M. D., Ganoza-Roncal, J. J., Ruiz-Reyes, J. G., & Agurto-Piñarreta, A. I. (2025). Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield. Agroindustrial Science, 14(3), 243-253. https://doi.org/10.17268/agroind.sci.2025.03.05

Número

Sección

Artículos de investigación