Understanding acrylamides in foods: mechanistic insights, exposure risks and technological approaches for reduction

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.03.03

Palabras clave:

acrylamide, Maillard, asparaginase, polysaccharides, food contaminant

Resumen

Acrylamide is a compound with a broad spectrum of toxic effects according to the International Agency for Research on Cancer (IARC), which has classified it as 2A or possibly carcinogenic to humans; acrylamide is formed in food products that pass thermal processes, such as roasting, baking and frying. These processes lead to the Maillard reaction (nonenzymatic browning), which is an important source of flavor and aroma, and sensory characteristics that are appreciated by the consumers; however, from this reaction the formation of newly formed contaminants also occurs as is the case of acrylamide. Strategies presented in this review are based on the reduction of acrylamide formation by controlling the Maillard reaction. This review gathers research on the strategies that allow the reduction of acrylamide formation, one of these being the use of asparaginase to convert asparagine into aspartic acid, the control of the process, the use of vacuum technology, the addition of mono and divalent cations, and the addition of low, medium and high molecular weight polysaccharides. It was found that the technique used depends on the starting raw material, so that the treatment cannot be generalized. The potato blanching in conjunction with the addition of asparaginase is one of the most promising techniques for reducing the content of acrylamide in this type of product.

Citas

Abdel-Daim, M. M., Abo El-Ela, F. I., Alshahrani, F. K., Bin-Jumah, M., Al-Zharani, M., Almutairi, B., Alyousif, M. S., Bungau, S., Aleya, L., & Alkahtani, S. (2020). Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environmental Science and Pollution Research, 27(34), 42318–42328. https://doi.org/10.1007/s11356-020-09516-3

Adascălului, A. C., Negoiță, M., Mihai, A. L., & Horneț, G.-A. (2021). Acrylamide in French fries prepared in at home and fast food conditions. Current Trends in Natural Sciences, 10(20), 06–12. https://doi.org/10.47068/ctns.2021.v10i20.001

Akagi, J., Yokoi, M., Miyake, Y., Shirai, T., Baba, T., Cho, Y.-M., Hanaoka, F., Sugasawa, K., Iwai, S., & Ogawa, K. (2023). A formamidopyrimidine derivative from the deoxyguanosine adduct produced by food contaminant acrylamide induces DNA replication block and mutagenesis. Journal of Biological Chemistry, 299(8), 105002. https://doi.org/10.1016/j.jbc.2023.105002

Alkaç, Z. K., Dağoğlu, İ., Korkak, F. A., Kazdal, S. M., & Dağ, A. (2024). Acrylamide formation: The effect of thawing and frying methods in chicken and fish meat. Journal of Food and Nutrition Research, 12(7), 349–354. https://doi.org/10.12691/jfnr-12-7-1

Alpözen, E., & Üren, A. (2013). Determination of acrylamide levels of “İzmir gevreği” and effects of cooking parameters on acrylamide formation. Journal of Agricultural and Food Chemistry, 61(30), 7212–7218. http://dx.doi.org/10.1021/jf401684d

Anese, M., Quarta, B., & Frias, J. (2011). Modelling the effect of asparaginase in reducing acrylamide formation in biscuits. Food Chemistry, 126(2), 435-440. https://doi.org/10.1016/j.foodchem.2010.11.007

Becalski, A., & Lewis, L. D. (2003). Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51(3), 802-808. https://doi.org/10.1021/jf020889y

Benford, D., Leblanc, J. C., & Setzer, R. W. (2010). Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic. Example: Aflatoxin B1 (AFB1). Food and Chemical Toxicology, 48(Suppl. 1), S2–S24. https://doi.org/10.1016/j.fct.2009.10.037

Boon, P. E., de Mul, A., van der Voet, H., van Donkersgoed, G., Brette, M., & van Klaveren, J. D. (2005). Calculation of dietary exposure to acrylamide. Mutation Research, 580(1–2), 143–155. https://doi.org/10.1016/j.mrgentox.2004.10.014

Boyaci Gunduz, C. P. (2023). Formulation and processing strategies to reduce acrylamide in thermally processed cereal-based foods. International Journal of Environmental Research and Public Health, 20(13), 6272. https://doi.org/10.3390/ijerph20136272

Breitling-Utzmann, C. M., & Hankele, S. (2019). Formation of acrylamide in vegetable crisps – Influence of processing conditions and reducing sugars. Deutsche Lebensmittel-Rundschau: Zeitschrift für Lebensmittelkunde und Lebensmittelrecht, 115, 265.

Bušová, M., Bencko, V., Kromerová, K., Nadjo, I., & Babjaková, J. (2020). Occurrence of acrylamide in selected food products. Central European Journal of Public Health, 28(4), 320–324. https://doi.org/10.21101/cejph.a6430

Champrasert, O., Chu, J., Meng, Q., Viney, S., Holmes, M., Suwannaporn, P., & Orfila, C. (2021). Inhibitory effect of polysaccharides on acrylamide formation in chemical and food model systems. Food Chemistry, 363, 130213. https://doi.org/10.1016/j.foodchem.2021.130213

Champrasert, O., Orfila, C., & Suwannaporn, P. (2022). Acrylamide mitigation using zein-polysaccharide complex particles. Food Hydrocolloids, 124(Part B), 107317. https://doi.org/10.1016/j.foodhyd.2021.107317

Chang, Y. W., Sung, W. C., & Chen, J. Y. (2016). Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products. Food Chemistry, 199, 581–589. https://doi.org/10.1016/j.foodchem.2015.12.065

Constantinou, C., & Koutsidis, G. (2016). Investigations on the effect of antioxidant type and concentration and model system matrix on acrylamide formation in model Maillard reaction systems. Food Chemistry, 197, 769-775. https://doi.org/10.1016/j.foodchem.2015.11.037

De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Van Deburie, S., Ooghe, W., et al. (2006). Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003. Journal of Agricultural and Food Chemistry, 54(2), 404-408. https://doi.org/10.1021/jf0521810

Di Francesco, A., Mari, M., Ugolini, L., Parisi, B., Genovese, J., Lazzeri, L., & Baraldi, E. (2019). Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. International Journal of Food Microbiology, 289, 168–173. https://doi.org/10.1016/j.ijfoodmicro.2018.09.018

Doroshyenko, O., Fuhr, U., Kunz, D., Frank, D., Kinzig, M., Jetter, A., et al. (2009). In vivo role of cytochrome P450 2E1 and glutathione-S-transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiology Biomarkers and Prevention, 18(2), 433–443. https://doi.org/10.1158/1055-9965.epi-08-0832

Echeverri, M. L., Jaramillo, L. A., & Quiroz, J. (2014). Acrilamida: Formación y mitigación en procesamiento industrial de alimentos. Universidad Lasallista.

Edna Hee, P.-T., Liang, Z., Zhang, P., & Fang, Z. (2024). Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control, 158, 110236. https://doi.org/10.1016/j.foodcont.2023.110236

Ehlers, A., Lenze, D., Broll, H., Zagon, J., Hummel, M., & Lampen, A. (2013). Dose dependent molecular effects of acrylamide and glycidamide in human cancer cell lines and human primary hepatocytes. Toxicology Letters, 217(2), 111–120. https://doi.org/10.1016/j.toxlet.2012.12.017

Ehling, S., Hengel, M., & Shibamoto, T. (2005). Formation of acrylamide from lipids. Advances in Experimental Medicine and Biology, 561, 223-233. https://doi.org/10.1007/0-387-24980-x_17

Eisenbrand, G. (2020). Revisiting the evidence for genotoxicity of acrylamide (AA), key to risk assessment of dietary AA exposure. Archives of Toxicology, 94(8), 2939–2950. https://doi.org/10.1007/s00204-020-02794-3

Enríquez, B., & Sosa, M. (2010). Acrilamida en alimentos: sus causas y consecuencias. Temas Selectos de Ingeniería de Alimentos, 4(2), 1–13.

FAO. (2009). Code of practice for the reduction of acrylamide in foods. Prevention and reduction of food and feed contamination 2009: 1-11.

Gama-Baumgartner, F., Grob, K., & Biedermann, M. (2004). Citric acid to reduce acrylamide formation in French fries and roasted potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 95(1), 110-117.

Gargas, M. L., Kirman, C. R., Sweeney, L. M., & Tardiff, R. G. (2009). Acrylamide: Consideration of species differences and nonlinear processes in estimating risk and safety for human ingestion. Food and Chemical Toxicology, 47, 760–768. https://doi.org/10.1016/j.fct.2008.12.032

Garzón, A. M. (2014). Evaluación de niveles de acrilamida en alimentos colombianos. Pontificia Universidad Javeriana.

González-Cuello, R., Tarón-Dunoyer, A., & Mercado-Camargo, J. (2018). Effect of different temperatures and exposure times on acrylamide formation in cassava (Manihot esculenta Crantz) chips. Contemporary Engineering Sciences, 11, 935–940. https://doi.org/10.12988/ces.2018.8268

Haase, N. U., Matthäus, B., & Vosmann, K. (2004). Aspects of acrylamide formation in potato crisps. Journal of Applied Botany and Food Quality, 78, 144-147.

Hendriksen, H. V., Budolfsen, G., & Baumann, M. J. (2013). Acrylamide, furans and other food-borne contaminants, from plant science to food chemistry. Aspects of Applied Biology, 116, 41-50.

Hogervorst, J., Schouten, L., & van den Brandt, P. (2009). Reaction on Gargas et al.: Acrylamide: Consideration of species differences and nonlinear processes in estimating risk and safety for human ingestion. Food and Chemical Toxicology, 47(11), 2871–2872 https://doi.org/10.1016/j.fct.2009.08.004

JECFA. (2011). Evaluación de los riesgos asociados con las sustancias químicas. Roma: FAO/OMS.

Jiao, L., Chi, H., Lu, Z., Zhang, C., Chia, S. R., Show, P. L., Tao, Y., & Lu, F. (2020). Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering, 129(6), 672-678. https://doi.org/10.1016/j.jbiosc.2020.01.007

Kahkeshani, N., Saeidnia, S., & Abdollahi, M. (2015). Role of antioxidants and phytochemicals on acrylamide mitigation from food and reducing its toxicity. Journal of Food Science and Technology, 52(6), 3169-3186. https://doi.org/10.1007/s13197-014-1558-5

Kamkar, A., Qajarbeygi, P., Jannat, B., Hosseini, A., Misaghi, A., & Molaee, E. (2015). The inhibitory role of autolysed yeast of Saccharomyces cerevisiae, vitamins B3 and B6 on acrylamide formation in potato chips. Toxin Reviews, 34. https://doi.org/10.3109/15569543.2014.974765

Keramat, J., LeBail, A., Prost, C., & Soltanizadeh, N. (2011). Acrylamide in foods: Chemistry and analysis. A review. Food and Bioprocess Technology, 4(3), 340-363. https://doi.org/10.1007/s11947-010-0470-x

Kopańska, M., Łagowska, A., Kuduk, B., & Banaś-Ząbczyk, A. (2022). Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. International Journal of Molecular Sciences, 23(4), 2030. https://doi.org/10.3390/ijms23042030

Koricanac, V., Jankovic, S., Vranic, D., Stankovic, I., Nikolic, D., Petrovic, Z., & Milicevic, D. (2021). The presence of acrylamide in various types of food products from the Serbian market. IOP Conference Series: Earth and Environmental Science, 854, 012045. https://doi.org/10.1088/1755-1315/854/1/012045

Lambert, M., Inthavong, C., Hommet, F., Leblanc, J., Hulin, M., & Guérin, T. (2018). Levels of acrylamide in foods included in the first French total diet study on infants and toddlers. Food Chemistry, 240, 997-1004. https://doi.org/10.1016/j.foodchem.2017.08.035

Lineback, D. R., Coughlin, J. R., & Stadler, R. H. (2012). Acrylamide in foods: A review of the science and future considerations. Annual Review of Food Science and Technology, 3(1), 15–35. https://doi.org/10.1146/annurev-food-022811-101114

Liu, C., Luo, L., & Lin, Q. (2019). Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules. Journal of Food Biochemistry, 43(e12756). https://doi.org/10.1111/jfbc.12756

Lund, M. N., & Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537-4552. https://doi.org/10.1021/acs.jafc.7b00882

Mahajan, R. V., Saran, S., Kameswaran, K., Kumar, V., & Saxena, R. K. (2012). Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: Optimization, scale-up, and acrylamide degradation studies. Bioresource Technology, 125, 11-16. https://doi.org/10.1016/j.biortech.2012.08.086

Matthäus, B., & Haase, N. U. (2016). Acrylamide in ready-to-eat foods. Food hygiene and toxicology in ready-to-eat foods, 353-382. https://doi.org/10.1016/B978-0-12-801916-0.00020-0

Navruz-Varlı, S., & Mortaş, H. (2024). Acrylamide formation in air-fried versus deep and oven-fried potatoes. Frontiers in Nutrition, 10, 1297069. https://doi.org/10.3389/fnut.2023.1297069

Negoiță, M., Mihai, A. L., & Horneț, G. A. (2022). Influence of water, NaCl and citric acid soaking pre-treatments on acrylamide content in French fries prepared in domestic conditions. Foods, 11(9), 1204. https://doi.org/10.3390/foods11091204

Mesías, M., Delgado-Andrade, C., Holgado, F., & Morales, F. J. (2020). Acrylamide in French fries prepared at primary school canteens. Food & Function, 11, 1489. https://doi.org/10.1039/c9fo02482d

Mesías, M., Morales, F. J., & Delgado-Andrade, C. (2019). Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019. Food & Function, 10, 6624. https://doi.org/10.1039/c9fo01554j

Mogol, B. A. (2015). Alternative technologies for the mitigation of acrylamide in processed foods. Elsevier Inc. https://doi.org/10.1016/B978-0-323-99119-3.00007-2

Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448-449. https://doi.org/10.1038/419448a

Mousa, R. M. A. (2019). Simultaneous mitigation of 4(5)-methylimidazole, acrylamide, and 5-hydroxymethylfurfural in ammonia biscuits by supplementing with food hydrocolloids. Food Science & Nutrition, 7(12), 3954–3964. https://doi.org/10.1002/fsn3.1250

Mustafa, A. (2008). Acrylamide in Bread: Precursors, Formation and Reduction. (Doctoral thesis), Swedish University of Agricultural Sciences, Uppsala

Nguyen, K. H., Nielsen, R. H., Mohammadifar, M. A., & Granby, K. (2022). Formation and mitigation of acrylamide in oven baked vegetable fries. Food Chemistry, 386, 132764. https://doi.org/10.1016/j.foodchem.2022.132764

Pedreschi, F., Mariotti, S., Granby, K., & Risum, J. (2011). Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT - Food Science and Technology, 44(6), 1473-1476. https://doi.org/10.1016/j.lwt.2011.02.004

Pelucchi, C., La Vecchia, C., Bosetti, C., Boyle, P., & Boffetta, P. (2011). Exposure to acrylamide and human cancer—a review and meta-analysis of epidemiologic studies. Annals of Oncology, 22(7), 1487–1499. https://doi.org/10.1093/annonc/mdq610

Perera, D. N., Hewavitharana, G. G., & Navaratne, S. B. (2021). Comprehensive study on the acrylamide content of high thermally processed foods. BioMed Research International, 2021, 6258508. https://doi.org/10.1155/2021/6258508

Plaza, C. I. (2015). Reducción del contenido de acrilamida en pan tipo hallulla mediante la incorporación de asparaginasa. Universidad de Chile.

Powers, S. J., Mottram, D. S., Curtis, A., & Halford, N. G. (2017). Acrylamide levels in potato crisps in Europe from 2002 to 2016. Food Additives & Contaminants: Part A, 34(12), 2085–2100. https://doi.org/10.1080/19440049.2017.1379101

Pyo, M. C., Shin, H. S., Jeon, G. Y., & Lee, K.-W. (2020). Synergistic interaction of ochratoxin A and acrylamide toxins in human kidney and liver cells. Biological and Pharmaceutical Bulletin, 43(9), 1346–1355. https://doi.org/10.1248/bpb.b20-00351

Quan, W., Li, Y., Jiao, Y., Xue, C., Liu, G., Wang, Z., He, Z., Qin, F., Zeng, M., & Chen, J. (2020). Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation end products in an aqueous Maillard reaction model system. Food Chemistry, 340, 127387. https://doi.org/10.1016/j.foodchem.2020.127387

Rannou, C., Laroque, D., Renault, E., Prost, C., & Sérot, T. (2016). Mitigation strategies of acrylamide, furans, heterocyclic amines, and browning during the Maillard reaction in foods. Food Research International, 90, 154-176. https://doi.org/10.1016/j.foodres.2016.10.037

Riboldi, B. P., Vinhas, Á. M., & Moreira, J. D. (2014). Risks of dietary acrylamide exposure: A systematic review. Food Chemistry, 157, 310–322. https://doi.org/10.1016/j.foodchem.2014.02.046

Rice, J. M. (2005). The carcinogenicity of acrylamide. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 580(1-2), 3–20. https://doi.org/10.1016/j.mrgentox.2004.09.008

Samadi Ghorbani, N., Mazaheri Tehrani, M., Haddad Khodaparast, M. H., & Farhoosh, R. (2019). Effect of temperature, time, and asparaginase on acrylamide formation and physicochemical properties of bread. Acta Alimentaria, 48(2), 160–168. https://doi.org/10.1556/066.2019.48.2.3

Stadler, R. H., & Scholz, G. (2004). Acrylamide: An update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutritional Reviews, 62(12), 449-467. https://doi.org/10.1111/j.1753-4887.2004.tb00018.x

Stadler, R. H., & Theurillat, V. (2017). Heat-generated toxicants in foods (acrylamide, MCPD esters, glycidyl esters, furan, and related compounds). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100674-0.00008-4

Sung, W.-C., Chang, Y.-W., Chou, Y.-H., & Hsiao, H.-I. (2018). The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans. Food Chemistry, 243, 141-144. https://doi.org/10.1016/j.foodchem.2017.09.119

Tardiff, R. G., Gargas, M. L., Kirman, C. R., Carson, M. L., & Sweeney, L. M. (2010). Estimation of safe dietary intake levels of acrylamide for humans. Food and Chemical Toxicology, 48(2), 658–667. https://doi.org/10.1016/j.fct.2009.11.048

Topete-Betancourt, A., Figueroa Cárdenas, J. D., Rodríguez-Lino, A. L., Ríos-Leal, E., Morales-Sánchez, E., & Martínez-Flores, H. E. (2019). Effect of nixtamalization processes on mitigation of acrylamide formation in tortilla chips. Food Science and Biotechnology, 28(4), 975–982. https://doi.org/10.1007/s10068-019-00563-2

Unión Europea. (2017). Reglamento para medidas de mitigación y niveles de referencia para reducir la presencia de acrilamida en los alimentos. Reglamento (UE) 2017/2158.

Walters, B., Hariharan, V., & Huang, H. (2014). Dietary levels of acrylamide affect rat cardiomyocyte properties. Food and Chemical Toxicology, 71, 68-73. https://doi.org/10.1016/j.fct.2014.05.029

Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 210, 163-171. https://doi.org/10.1016/j.foodchem.2016.04.105

Zeng, S., Chen, W., Ye, J., & Yang, C. (2020). Investigation on the contents of acrylamide in baked and fried foods. IOP Conference Series: Earth and Environmental Science, 512, 012058. https://doi.org/10.1088/1755-1315/512/1/012058

Zhang, G., Huang, G., Xiao, L., Seiber, J., & Mitchell, A. E. (2011). Acrylamide formation in almonds (Prunus dulcis): Influences of roasting time and temperature, precursors, varietal selection, and storage. Journal of Agricultural and Food Chemistry, 59(15), 8225-8232. https://doi.org/10.1021/jf201595q

Zhang, Y., Kahl, D. H. W., Bizimungu, B., & Lu, Z.-X. (2018). Effects of blanching treatments on acrylamide, asparagine, reducing sugars and colour in potato chips. Journal of Food Science and Technology, 55(10), 4028–4041. https://doi.org/10.1007/s13197-018-3329-1

Zhao, C.-Y., Hu, L.-L., Xing, C.-H., Lu, X., Sun, S.-C., Wei, Y.-X., & Ren, Y.-P. (2022). Acrylamide exposure destroys the distribution and functions of organelles in mouse oocytes. Frontiers in Cell and Developmental Biology, 10, 834964. https://doi.org/10.3389/fcell.2022.834964

Zyzak, D., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., et al. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51(16), 4782–4787.

Descargas

Publicado

2025-09-29

Cómo citar

Alfaro-Solís, R., & Armijo-Montes, O. (2025). Understanding acrylamides in foods: mechanistic insights, exposure risks and technological approaches for reduction. Agroindustrial Science, 14(3), 219-228. https://doi.org/10.17268/agroind.sci.2025.03.03

Número

Sección

Artículo de Revisión