Aminochelated and microparticulated zinc applied to citrus grown in calcareous soil
DOI:
https://doi.org/10.17268/agroind.sci.2025.01.10Palabras clave:
young trees, Citrus sinensis, chlorophyll, Zn concentration, growthResumen
The objective of this study was to evaluate the effect of foliar fertilization with alternative zinc (Zn) sources on the nutritional status and growth of young ´Valencia´ orange (Citrus sinensis L. Osbeck) trees grown in calcareous soil (pH = 8.1). Nine treatments were tested: the commercial amino chelates Aton Zn (0.3% and 0.5%) and Kelatex Zn Forte (0.5% and 1.0%); the commercial Zn microparticles Basfoliar Zn 75 Flo (0.1% and 0.2%); ZnSO4H2O (0.3% and 0.5%); and a control treatment with no Zn application. The Zn concentration in leaves increased with the application of Aton Zn (0.3%), Kelatex Zn Forte (0.5% and 1.0%), and ZnSO4H2O (0.3% and 0.5%). The Zn concentration in roots increased only in trees sprayed with Kelatex Zn Forte (1.0%). The chlorophyll index (SPAD readings) decreased in most treatments, except in leaves sprayed with ZnSO4H2O (0.3%) and Kelatex Zn Forte (1.0%). The N concentration in leaves increased with the application of ZnSO4H2O (0.5%), while P levels did not increase in any treatment. The foliar K concentration increased in trees sprayed with Aton Zn (0.3% and 0.5%), Basfoliar Zn 75 Flo (0.1%) and ZnSO4H2O (0.3%). The concentrations of Mn, Cu, and B in leaves remained unchanged across all treatments. Foliar Fe concentration increased in trees sprayed with Kelatex Zn Forte (0.5%) and ZnSO4H2O (0.3%). Zn application had no significant effect on tree growth. The amino chelate Kelatex Zn Forte at a 1.0% dose shows promising potential by increasing Zn concentrations in leaves and roots while maintaining the chlorophyll index.
Citas
Asadi, K. A., & Akhlaghi, A. N. (2020). Evaluation of growth rate and vegetative and physiological characteristics of Satsuma mandarin on C-35 rootstock in some calcareous soils. Iranian Journal of Soil Research, 34(2), 215–233. https://doi.org/10.22092/IJSR.2020.122521
Boaretto, R. M., Hippler, F. W. R., Teixeira L. A. J., Fornari, R. C., Quaggio, J. A., & Mattos, D. (2023) Zinc fertilizers for Citrus production: assessing nutrient supply via fertigation or foliar application. Plant and Soil, 496, 1–14. https://doi.org/10.1007/s11104-023-05969-w
Bolan, N., Srivastava, P., Rao, C. S., Satyanaraya, P. V., Anderson, G. C., Bolan, S., et al. (2023). Distribution, characteristics and management of calcareous soils. Advances in agronomy, 182, 81–130. https://doi.org/10.1016/bs.agron.2023.06.002
Bouain, N., Shahzad, Z., Rouached, A., Khan, G. A., Berthomieu, P., Abdelly, C., & Rouached, H. (2014). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 65(20), 5725–5741. https://doi.org/10.1093/jxb/eru314
Bremner, J. M. (1965). Total nitrogen. In: Methods of soil analysis. Part 2. Chemical and Microbiological Properties. A. G. Norman (ed.). American Society of Agronomy. Madison, WI, USA. pp: 1149–1178. https://doi.org/10.2134/agronmonogr9.2.c32
Clemens, S. (2022). The cell biology of zinc. Journal of Experimental Botany, 73(6), 1688–1698. https://doi.org/10.1093/jxb/erab481
Dawood, S. A., Meligy, M. S., & El-Hamady, M. M. (2001). Influence of Zn sulfate application on tree leaf and fruit characters of three young citrus varieties grown on slightly alkaline soil. Annals of Agriculture Science Moshtohor, 39(1), 433–447. https://doi.org/10.1080/01904167.2013.785567
Du, Y., Li, P., Nguyen, A. V., Xu, Z. P., Mulligan, D., & Huang, L. (2015). Zinc uptake and distribution in tomato plants in response to foliar supply of Zn hydroxide-nitrate nanocrystal suspension with controlled Zn solubility. Journal of Plant Nutrition and Soil Science, 178(5), 722–731. https://doi.org/10.1002/jpln.201400213
Fageria, V. D. (2001). Nutrient interactions in crop plants. Journal of plant nutrition, 24(8), 1269–1290. https://doi.org/10.1081/PLN-100106981
Fei, X. I. N. G., Fu, X. Z., Wang, N. Q., Xi J. L., Huang, Y., Wei, Z. H. O. U., & Peng, L. Z. (2016). Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). Journal of integrative agriculture, 15(4), 803–811. https://doi.org/10.1016/S2095-3119(15)61276-X
Fu, X. Z., Xing, F., Chao, L., Chun, C. P., Ling, L.L., Jiang, C. L., & Peng, L. Z. (2016). Effects of foliar application of various zinc fertilizers with organosilicone on correcting citrus zinc deficiency. HortScience, 51(4), 422–426. https://doi.org/10.21273/HORTSCI.51.4.422
Gaines, T. P., & Mitchell, G. A. (1979). Boron determination in plant tissue by the azomethine H method. Communications in Soil Science and Plant Analysis, 10(8), 1099–1108. https://doi.org/10.1080/00103627909366965
Gao, J., Zhuang, S., & Zhang, W. (2024). Advances in plant auxin biology: synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants, 13(17), 2523. https://doi.org/10.3390/plants13172523
Ghasemi, S., Khoshgoftarmanesh, A. H., Afyuni, M., & Hadadzadeh, H. (2013). The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 45, 68–74. https://doi.org/10.1016/j.eja.2012.10.012
Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15, 89–109. https://doi.org/10.1007/s11157-016-9390-1
Hamzah, S. M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. https://doi.org/10.3389/fpls.2022.1033092
Intrigliolo, F., Giuffrida, A., Rapisarda, P., Calabretta, M., & Roccuzzo, G. (2000). SPAD as an indicator of nitrogen status in Citrus. In: Proceeding of the IXth international citrus congress, Orlando, FL, USA, pp: 665–667.
Krouk, G., & Kiba, T. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Current Opinion in Plant Biology, 57, 104–109, https://doi.org/10.1016/j.pbi.2020.07.002
Kulig, B., Klimek-Kopyra, A., Ślizowska, A., Oleksy, A., Skowera, B., Lepiarczyk, A., & Grygierzec, W. (2024). A comparison of the methods used to assess the nutritional status of selected crop species. Journal of Water and Land Development, 1–10. https://doi.org/10.24425/jwld.2024.151784
Macedo, L. O., Mattos, D., Jacobassi, R. C., Petená, G., Quaggio, J. A., & Boaretto, R. M. (2021). Characterization and use efficiency of sparingly soluble fertilizer of boron and zinc for foliar application in coffee plants. Bragantia, 80, e3421. https://doi.org/10.1590/1678-4499.20200329
Makhasha, E., Al-Obeed, R. S., & Abdel-Sattar, M. (2024). Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc. Sustainability, 16(14), 6060. https://doi.org/10.3390/su16146060
Mirboloock, A., Rasouli, S. M., Sepehr, E., Lakzian, A., & Hakimi, M. (2021). Synthesized Zn (II)-amino acid and chitosan chelates to increase Zn uptake by bean (Phaseolus vulgaris) plants. Journal of Plant Growth Regulation, 40, 831–847. https://doi.org/10.1007/s00344-020-10151-y
Mosa, W. F., Ali, H. M., & Abdelsalam, N. R. (2021). The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environmental Science and Pollution Research, 28, 1983–1991. https://doi.org/10.1007/s11356-020-10658-7
Najizadeh, A., & Khoshgoftarmanesh, A. H. (2019). Effects of foliar applied zinc in the form of ZnSO4 and Zn-amino acid complexes on pistachio nut yield and quality. Journal of Plant Nutrition, 42(18), 2299–2309. https://doi.org/10.1080/01904167.2019.1655043
Nasir, M., Khan, A. S., Basra, S. A., & Malik, A. U. (2016). Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Scientia Horticulturae, 210, 227–235. https://doi.org/10.1016/j.scienta.2016.07.032
Obreza, T. A., Zekri, M., & Hanlon, E. A. (2020). Soil and leaf tissue testing. In: Morgan K. T., D and M. Kadyampakeni (eds.), Nutrition of Florida citrus trees (3rd ed.) SL458/SS671. EDIS: Florida, USA, pp: 23–32.
Ojeda, B. D. L., Perea, P. E., Hernández, R. O. A., Ávila, Q. G., Abadía, J., & Lombardini, L. (2014). Foliar fertilization with zinc in pecan trees. HortScience, 49(5), 562–566. https://doi.org/10.21273/HORTSCI.49.5.562
Oliveira, M. L., Mattos, J. D., Jacobassi, R., Rieger, H. F. W., Quaggio, J. A., & Boraetto, R. M. (2020). Efficiency of foliar application of sparingly soluble sources of boron and zinc in citrus. Scientia Agricola, 78(1), e20180387. https://doi.org/10.1590/1678-992X-2018-0387
Prasad, R., Shivay, Y. S., & Kumar, D. (2016). Interactions of zinc with other nutrients in soils and plants-A Review. Indian Journal of Fertilizers, 12, 16–26.
Rafie, M. R., Khoshgoftarmanesh, A. H., Shariatmadari, H., & Darabi, A. (2023). Apoplastic and symplastic zinc concentration of intact leaves of field onion (Allium cepa) as affected by foliar application of ZnSO4 and Zn-amino chelates. Journal of Plant Nutrition, 46(5), 731–742. https://doi.org/10.1080/01904167.2022.2044046
Sourati, R., Sharifi, P., Poorghasemi, M., Alves Vieira, E., Seidavi, A., Anjum, N. A., et al. (2022). Effects of naphthaleneacetic acid, indole-3-butyric acid and zinc sulfate on the rooting and growth of mulberry cuttings. International Journal of Plant Biology, 13(3), 245–256. https://doi.org/10.3390/ijpb13030021
Souri, K. M., & Hatamian, M. (2019). Aminochelates in plant nutrition: a review. Journal of Plant Nutrition, 42(1), 67–78. https://doi.org/10.1080/01904167.2018.1549671
Srivastava, A. K., & Singh, S. (2005). Zinc nutrition, a global concern for sustainable citrus production. Journal of Sustainable Agriculture, 25(3), 5–42. https://doi.org/10.1300/J064v25n03_03
Umair, H., Aamer, M., Umer, C. M., Haiying, M., Shahzad, T., Barbanti, B., et al. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396
Xie, R., Zhao, J., Lu, L., Brown, P., Guo, J., & Tian, S. (2020). Penetration of foliar-applied Zn and its impact on apple plant nutrition status: in vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Horticulture research, 7, 147. https://doi.org/10.1038/s41438-020-00369-y
Zekri, M., & Obreza, T. (2003). Micronutrient deficiencies in citrus: iron, zinc and manganese. EDIS. SL 204. EDIS. (2). https://doi.org/10.32473/edis-ss423-2003
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Osbaldo Martínez-Ríos, José Isabel Cortés-Flores, Alfredo López-Jiménez, Jorge Dionisio Etchevers-Barra, María Belia Contreras-Soto

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores conservan sus derechos de autor sin restricciones.