Actividad antifúngica in vitro de extractos de ramas/hojas de arándano y semilla de palta contra Botrytis sp.

Autores/as

  • Eder Flores-Bedregal Unidad de Investigación y Desarrollo. Camposol S.A. Lima.
  • Jeniffer Puelles-Román Unidad de Investigación y Desarrollo. Camposol S.A. Lima.
  • Alessandra Mendoza-Moncada Unidad de Investigación y Desarrollo. Camposol S.A. Lima
  • Katherine Chacon-Rodriguez Unidad de Investigación y Desarrollo. Camposol S.A. Lima.
  • Luz Terrones-Ramirez Unidad de Investigación y Desarrollo. Camposol S.A. Lima.
  • William Mendez-Vilchez Unidad de Investigación y Desarrollo. Camposol S.A. Lima.

DOI:

https://doi.org/10.17268/agroind.sci.2023.02.01

Palabras clave:

Bioactivos, polifenoles, Botrytis, postcosecha, subproductos

Resumen

Actualmente, se ha hecho más intensiva la búsqueda de productos ecoamigables, orientando la agroindustria hacia prácticas más sostenibles. La obtención de compuestos bioactivos con actividad antifúngica representa una fuente viable de fungicidas para uso en postcosecha dado que hasta el momento persiste una alta demanda de fungicidas químicos en la industria. Se evaluó el efecto de dos extractos acuosos de origen acetónico obtenidos de ramas y hojas de arándano (mezcla) y semilla de palta; este material vegetal forma parte de residuos agroindustriales procedentes del proceso productivo de la empresa Camposol S.A. Para determinar la concentración de polifenoles, se utilizó el método de Folin Ciocalteu y para la capacidad antioxidante, el método del radical DPPH. Se realizó la identificación tentativa de compuestos presentes en cada extracto mediante UHPLC-DAD-ESI/MS. Los extractos acetónicos fueron secados y re-suspendidos en agua. Se utilizaron tres concentraciones (5, 25 y 50 mg/mL) sobre la inhibición de germinación esporas y crecimiento micelial de Botrytis sp. Se obtuvo 55% de inhibición de esporas a las 24 h de incubación y 19% de inhibición en el crecimiento micelial a los 7 días de incubación. Esta investigación contribuye con la valorización de subproductos otorgándoles valor agregado, alentando a desarrollar e implementar nuevos productos a base de material vegetal con potencial bioactivo importante para el sector emergente de la Agroindustria.

Citas

Al Aboody, M. S., & Mickymaray, S. (2020). Anti-Fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel), 9(2), 1-42.

Alonso-Esteban, J. I., Pinela, J., Barros, L., Ćirić, A., Soković, M., Calhelha, R. C., . . . & Ferreira, I. (2019). Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Industrial Crops and Products, 134, 154-159.

Alvarez-Pérez, O. B., Ventura-Sobrevilla, J. M., Ascacio-Valdés, J. A., Rojas, R., Verma, D. K., & Aguilar, C. N. (2020). Valorization of Flourensia cernua DC as source of antioxidants and antifungal bioactives. Industrial Crops and Products, 152, Artículo 112422.

Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80, 51-60.

Baldino, L., González-Garcinuño, Á., Tabernero, A., Cardea, S., Martín del Valle, E. M., & Reverchon, E. (2021). Production of fungistatic porous structures of cellulose acetate loaded with quercetin, using supercritical CO2. The Journal of Supercritical Fluids, 169, 105129.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2). 71-79.

Barnett, H.L. & Hunter, B.B. (1998). Illustrated Genera of Imperfect Fungi. (4th Ed., p. 76-77) St. Paul: APS Press.

Barros, L., Dueñas, M., Carvalho, A. M., Ferreira, I. C., & Santos-Buelga, C. (2012). Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 50(5), 1576-1582.

Bljajić, K., Petlevski, R., Vujić, L., Čačić, A., Šoštarić, N., Jablan, J., . . . & Zovko Končić, M. (2017). Chemical Composition, Antioxidant and α-Glucosidase-Inhibiting Activities of the Aqueous and Hydroethanolic Extracts of Vaccinium myrtillus Leaves. Molecules, 22(5), 703.

Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft Und - Technologie – Food Sci. Technol., 28, 25–30.

Chai, Z., Tian, L., Yu, H., Zhang, L., Zeng, Q., Wu, H., . . . & Huang, W. (2020). Comparison on chemical compositions and antioxidant capacities of the green, oolong, and red tea from blueberry leaves. Food Science & Nutrition, 8(3), 1688-1699.

Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., & Wang, D. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38, 184-191.

Duan, Y., Tarafdar, A., Chaurasia, D., Singh, A., Bhargava, P. C., Yang, J., . . . & Awasthi, M. K. (2022). Blueberry fruit valorization and valuable constituents: A review. International Journal of Food Microbiology, 381, Artículo 109890.

Eloff, J. N., Angeh, I. E., & Mcgaw, L. J. (2017). El fraccionamiento solvente-solvente puede aumentar la actividad antifúngica de un extracto de hoja de acetona de Melianthus comosus (Melianthaceae) para producir un producto antifúngico comercial potencialmente útil. Cultivos y productos industriales, 110, 103-112.

FAOSTAT - Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2020). Datos sobre alimentación y agricultura.

Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., & Segura-Carretero, A. (2018). Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Research International, 105, 752-763.

Gholamnezhad, J. (2019). Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea. Journal of Integrative Agriculture, 18(1), 115-123.

Gonzalez-Estrada, R. R., Ascension-Valley, F., Ragazzo-Sanchez, J. A., & Calderon Santoyo, M. (2017). Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on persian lime. Emirates Journal of Food and Agriculture, 29(2), 114-122.

Herrera-Balandrano, D. D., Chai, Z., Hutabarat, R. P., Beta, T., Feng, J., Ma, K., . . . & Huang, W. (2021). Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biology, 46, Artículo 102100.

Jaisinghani, R. N. (2017). Antibacterial properties of quercetin. Microbiology Research, 1(8).

Kang, J., Price, W. E., Ashton, J., Tapsell, L. C., & Johnson, S. (2016). Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chemistry, 211, 215-226.

Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., . . . & Pant, D. (2020). Valorization of agricultural waste for biogas based ciruclar economy in India: a research outlook. Bioseur. Technol, 304, Artículo 123036.

Kopka, B., Kost, B., Wrześniewska, J., Rajkowska, K., Kadłubowski, S., Kunicka-Styczyńska, A., . . . & Brzeziński, M. (2023). Supramolecular poly(vinyl alcohol)-based hydrogels containing quercetin for bacterial and fungal elimination. European Polymer Journal, 187, 111881.

Leontopoulos, S., Skenderidis, P., Petrotos, K., Mitsagga, C., & Giavasis, I. (2022). Preliminary Studies on Supression of important Plant Pathogens by using Pomegranate and Avocado residual peel and seed extracts. Horticulturae, 8, 283.

Lin, Han, Li, Wang, Lai, & Zhou. (2019). Quinoa Secondary Metabolites and Their Biological Activities or Functions. Molecules, 24(13), 2512.

Liu, H., Qin, S., Sirohi, R., Ahluwalia, V., Zhou, Y., Sindhu, R., . . . & Awasthi, M. K. (2021a). Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. Bioresource Technology, 332, Artículo 125181.

Liu, P., Lindstedt, A., Markkinen, N., Sinkkonen, J., Suomela, J., & Yang, B. (2014). Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). Journal of Agricultural and Food Chemistry, 62(49), 12015-12026.

Liu, P., Shen, J., Wang, Y., Fang, Q., Yuan, S., Qu, G., & Cao, J. (2022). Effect of p-coumarate esters resistant against postharvest Botrytis cinerea infection in apple fruit. Scientia Horticulturae, 297, Artículo 110926.

Liu, Y., Benohoud, M., Galani Yamdeu, J. H., Gong, Y. Y., & Orfila, C. (2021b). Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chemistry, 12, Artículo 100144.

López-Cobo, A., Gómez-Caravaca, A. M., Pasini, F., Caboni, M. F., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other. LWT, 73, 505-513.

Lourenço, S. C., Moldao-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: from sources to food industry applications. Molecules, 24 (22), 4132.

Madhavan, A., Arun, K. B., Alex, D., Anoopkumar, A. N., Emmanual, S., Chaturvedi, P., . . . & Sindhu, R. (2022). Microbial production of nutraceuticals: metabolic engineering interventions in phenolic compounds, poly unsatured fatty acids and carotenoids synthesis. J. Food Sci. Technol, 60, 2092–2104.

Martucci, M. E., De Vos, R. C., Carollo, C. A., & Gobbo-Neto, L. (2014). Metabolomics as a Potential Chemotaxonomical Tool: Application in the Genus Vernonia Schreb. PLOS ONE, 9(4), e93149.

Matrose, N. A., Obikeze, K., Belay, Z. A., & Caleb, O. J. (2021). Impact of spatial variation and extraction solvents on bioactive compounds, secondary metabolites and antifungal efficacy of South African Impepho [Helichrysum odoratissimum (L.) Sweet]. Food Bioscience, 42, Artículo 101139.

Matrose, N. A., Belay, Z. A., Obikeze, K., Mokwena, L., & Caleb, O. J. (2023). Bioprospecting of Helichrysum Species: Chemical Profile, Phytochemical Properties, and Antifungal Efficacy against Botrytis cinerea. Plants, 12, 58.

Munhuweyi, K., Caleb, O. J., Lennox, C. L., van Reenen, A. J., & Opara, U. L. (2017). Actividad antifúngica in vitro e in vivo de los aceites esenciales de quitosano contra patógenos del fruto de la granada. Biología y tecnología poscosecha, 129, 9-22.

Picman, A., Schneider, E., & Picman, J. (1995). Effect of Flavonoids on Mycelial Growth of Verticillium albo-atrum. Biochemical Systematics and Ecology, 23(7/8), 683-693.

Prior, R., Wu, X., & Schaich, K. (2005). Standarized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem, 53(10), 4290–4302.

Rosero, J. C., Cruz, S., Osorio, C., & Hurtado, N. (2019). Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules, 24, 3209.

Routray, W., & Orsat, V. (2014). Variation of phenolic profile and antioxidant activity of North American highbush blueberry leaves with variation of time of harvest and cultivar. Industrial Crops and Products, 62, 147-155.

Salazar-López, N. J., Domínguez-Avila, J. A., Yahia, E. M., Belmonte-Herrera, B. H., Wall-Medrano, A., Montalvo-González, E., & González-Aguilar, G. A. (2020). Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International, 138, Part A, Artículo 109774.

Sater, H., Ferrão, L. F., Olmstead, J., Munoz, P. R., Bai, J., Hopf, A., & Plotto, A. (2021). Exploring environmental and storage factors affecting sensory, physical and chemical attributes of six southern highbush blueberry cultivars. Scientia Horticulturae, 289, Artículo 110468.

Šavikin, K., Živković, J., Zdunić, G., Gođevac, D., Đorđević, B., Dojčinović, B., & Đorđević, N. (2014). Phenolic and mineral profiles of four Balkan indigenous apple cultivars monitored at two different maturity stages. Journal of Food Composition and Analysis, 35(2), 101-111.

Ștefănescu, B.-E., Călinoiu, L.F., Ranga, F., Fetea, F., Mocan, A., Vodnar, D.C., & Crișan, G. (2020). The Chemical and Biological Profiles of Leaves from Commercial Blueberry Varieties. Plants, 9, 1193.

Torgbo, S., Sukatta, U., Kamonpatana, P., & Sukyai, P. (2022). Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chemistry, 382, Artículo 132332.

Vázquez-González, Y., Ragazzo-Sánchez, J. A., & Santoyo, M. C. (2020). Caracterización y actividad antifúngica del extracto de hoja de jaca (Artocarpus heterophyllus Lam.) obtenido mediante tecnologías convencionales y emergentes. Química de los Alimentos, 330, Artículo 127211.

Wang, L.-J., Wu, J., Wang, H.-X., Li, S.-S., Zheng, X.-C., Du, H., . . . & Wang, L.-S. (2015). Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. Journal of Functional Foods, 16, 295-304.

Westlake, D. W., Talbot, G. S., Blakley, E., & Simpson, F. J. (1959). Microbial decomposition of rutin. Can. J. Microbiol, 5, 529-621.

Yi, S., Yi, L., Li, L., Jin, F., Beiyan, L., Xuedong, Z., & Hongkun, W. (2011). Antibacterial activity of quercetin on oral infectious pathogens. African Journal Microbiol. Res., 5(30), 5358–5361.

Yong-Sheng, J. (2019). Avances recientes en flavonoides antifúngicos naturales y sus derivados. Cartas de química bioorgánica y medicinal, 29(19).

Zabka, M. P., & Gabrielova-Slezakova, L. (2011). Promising antifungal effect of some Euro-Asiatic plants against dangerous pathogenic and toxinogenic fungi. Journal of the Science of Food and Agriculture, 91, 492–497.

Zhang, D., Bi, W., Kai, K., Ye, Y., & Liu, J. (2020a). Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. LWT – Food Science and Technology, 132. Artículo 109805.

Zhang, M., Wang, D., Gao, X., Yue, Z., & Zhou, H. (2020b). Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Sci. Hortic., 268, Artículo 109348.

Zhang, X., Zhang, P., Yuan, X., Li, Y., & Han, L. (2020c). Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour. Technol, 296, Artículo 122318.

Descargas

Publicado

2023-09-04

Cómo citar

Flores-Bedregal, E. ., Puelles-Román, J. ., Mendoza-Moncada, A. ., Chacon-Rodriguez, K. ., Terrones-Ramirez, L. ., & Mendez-Vilchez, W. . (2023). Actividad antifúngica in vitro de extractos de ramas/hojas de arándano y semilla de palta contra Botrytis sp. Agroindustrial Science, 13(2), 55-66. https://doi.org/10.17268/agroind.sci.2023.02.01

Número

Sección

Artículos de investigación