Some Results for Generalized Local Homology Modules

Authors

  • Carlos Henrique Tognon DMAT, Universidade Federal do Triángulo Mineiro, Instituto de Ciencias Tecnológicas e Exatas - ICTE, Uberaba, MG, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.15

Keywords:

Local cohomology modules, linearly compact module, (generalized) local homology, (co-) associated prime

Abstract

We prove some results on the finiteness of co-associated primes of generalized local homology modules inspired by the conjecture of Grothendieck and the question of Huneke. We also show equivalent properties of minimax local homology modules. Here, we get applications for the generalized local homology module, in a general theory of modules.

References

Atiyah MF, Macdonald IG. Introduction to Commutative Algebra, University of Oxford; 1969.

Brodmann MP, Sharp RY. Local cohomology: an algebraic introduction with geometric applications, Cambridge studies in Advanced Mathematics, 60, Cambridge: Cambridge University Press; 1998.

Cuong NT, Nam TT. The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc. 2001; 131:61 - 72.

Cuong NT. Left-derived functors of the generalized I-adic completion and generalized local homology, Comm. Algebra. 2010; 38:440-453.

Cuong NT. Minimax modules, local homology and local cohomology. Internat. J. Math. 2015; 26:155-161.

Herzog J. Komplexe, Auflosungen und dualitat in der localen Algebra, Habilitationschrift Univ. Regensburg; 1970.

Jensen CU. Les foncteurs derives de lim et leurs applications en theorie des modules, Lecture Notes in Mathematics, 254. Berlin: Springer-Verlag; 1972.

I.G. Macdonald, Duality over complete local rings. Topology. 1962; 1:213-235.

Nam TT. A local homology theory for linearly compact modules. J. Algebra. 2008; 319:4712-4737.

Nam TT. A finiteness result for co-associated and associated primes of generalized local homology and cohomology modules. Comm. Algebra. 2009; 37:1748-1757.

Nam TT. Co-support and coartinian modules. Algebra Colloq. 2008; 15:83-96.

Rotman JJ. An Introduction to Homological Algebra. University of Illinois, Urbana: Academic Press; 1979.

Yassemi S. Coassociated primes. Comm. Algebra. 1995; 23:1473-1498.

Yen DN, Nam TT. Generalized local homology and duality. Internat. J. Algebra Comput. 2019; 29:581-601.

Zoschinger H. Minimax-module. J. Algebra. 1986; 102:1-32.

Zoschinger H. Linear-kompakte Moduln uber noetherschen Ringen. Arch. Math. (Basel). 1983; 41:121-130.

Downloads

Published

2025-12-27

How to Cite

Tognon, C. H. (2025). Some Results for Generalized Local Homology Modules. Selecciones Matemáticas, 12(02), 469 - 474. https://doi.org/10.17268/sel.mat.2025.02.15

Issue

Section

Communications