Well-posedness for a Thir-Order PDE with Dissipation

Authors

  • Yolanda Silvia Santiago Ayala Department of Mathematics, Universidad Nacional Mayor de San Marcos, Lima-Peru.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.03

Keywords:

Semigroups theory, third-order equation, dissipative property of problem, nth order equation, Periodic Sobolev spaces, Fourier Theory

Abstract

In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.

References

Iorio Jr. RJ., Iorio V. de M, Fourier analysis and partial differential equation. Cambridge University; 2001.

Santiago Y., Rojas, S. Uniqueness solution of the heat equation in Sobolev Periodic Spaces. Selecciones Matematicas. 2020; 7(1): 172-175. Available from: https://doi.org/10.17268/sel.mat.2020.01.16

Ayala Y.S.S. Wellposedness of a Cauchy problem associated to third order equation.Transactions on Machine Learning and Artificial Intelligence. 2022; 10(4): 1-22. Available from: https://doi.org/10.14738/tmlai.104.12596

Ayala Y.S.S., Romero S.C.R. Existence and continuous dependence of the local solution of non homogeneous KdV-K-S

equation in periodic Sobolev spaces .Journal of Mathematical Sciences: Advances and Applications. 2021; 64(1): 1-19. Available from: https://doi.org/10.18642/jmsaa_7100122161

Ayala Y.S.S. Semigroup of weakly continuous operators associated to a generalized Schrodinger equation. Journal of Applied Mathematics and Physics. 2023; 11(4): 1061-1076. Available from: https://doi.org/10.4236/jamp.2023.114070

Liu Z., Zheng S., Semigroups associated with dissipative system. Chapman and Hall/CRC, New York; 1999.

Pazy A. Semigroups of linear operator and applications to partial differential equations. Applied Mathematical Sciences. 44 Springer Verlag, Berlin; 1983.

Reed M., Simon, B., Functional analysis. Academic Press; 1972.

Ayala Y.S.S. On the wellposedness of the KDV-K-S equation in periodic Sobolev spaces.Trajetorias e perspectivas para a pesquisa em matematica. 2022; 54-86. Available from: https://doi.org/10.22533/at.ed.5432206125

Santiago Y., Rojas S. Existencia y regularidad de solución de la ecuación del calor en espacios de Sobolev periódico. Selecciones Matematicas. 2019; 6(1): 49-65. Available from: https://doi.org/10.17268/sel.mat.2019.01.08

Downloads

Published

2025-12-27

How to Cite

Santiago Ayala, Y. S. (2025). Well-posedness for a Thir-Order PDE with Dissipation. Selecciones Matemáticas, 12(02), 288 - 308. https://doi.org/10.17268/sel.mat.2025.02.03