A seasonal commensalism model with a weak Allee effect to describe climate-mediated shifts

Authors

  • Osvaldo Osuna Instituto de Física y Matemáticas, Universidad Michoacana, Ciudad Universitaria, C.P. 58040. Morelia, Michoacán, México
  • Geiser Villavicencio-Pulido División de Ciencias Biológicas y de la Salud, Depto. de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Av. Hidalgo Poniente No. 46, col. La Estación, 52006 Lerma de Villada, Edo. De México, México

DOI:

https://doi.org/10.17268/sel.mat.2024.02.01

Keywords:

Almost periodic function, commensalism, climate change, Allee effect

Abstract

Climate change is affecting the life cycle of tight interacting species. Commonly, the seasonal population dynamics of species is analyzed through models with periodic rates; however, assuming periodicity in seasonal phenomena which depend on environmental drivers is very restrictive. In this work, we analyze seasonal commensalism between two species in which the per capita growth rate of each species is affected by a weak Allee effect and the demographic and ecological rates are assumed almost periodic. To do this, we construct and analyze an almost periodic model to describe commensalism using a wide family of functions that describe weak Allee effects and the benefits granted by the interaction. We prove that the model admits a unique almost periodic global attractor for a wide family of functions. Numerical simulations of the solutions of the model shown the result proved in this work. We show that if periodic rates are used when the phenomenon is really almost periodic, underestimation or overestimation of the population size of both species can occur, which can lead to design wrong strategies by the decision makers.

References

Hale RS, Valdovinos FS. Ecological theory of mutualism: Robust patterns of stability and thresholds in two-species population models. Ecol. Evolut.2021; vol. 11:17651-17671.

Amaral HLD, Bergmann FB, Silveira T, Silveira dos Santos PR, Kr¨uger RF. Pseudolynchia canariensis (Diptera: Hippoboscidae): distribution pattern and phoretic association with skin mites and chewing lice of Columba livia (Aves: Columbidae). J. of Natural History. 2013; vol. 47: 2927-2936. doi:10. 1080/00222933.2013.791939

Poinar GO, Curcic BPM, Cokendolpher JC. Arthropod Phoresy Involving Pseudoscorpions in the Past and Present. Acta arachnol. 1998; vol. 42:79-96.

Villegas-Guzmán GA, Pperez TM. Hallazgo de pseudoscorpiones (Arachnida: Pseudoscorpiones)foréticos de Felis catus Linnaeus, 1758, en la Ciudad de México. Folia Entomologica Mexicana.2005; vol. 44:85-87.

O'Connor BM. Parasitic and commensal arthopods of some birds and mammals of the Parc National de Marojejy, Madagascar. Fieldiana Zoology. 2000; vol. 97:137-141.

Lahionen P, Furman ER. The site of settlement indicates commensalism between bluemussel and its epibiont. Oecologia. 1986; vol. 71:38-40.

Hogan C. Commensalism[Internet], 2012; Retrieved from http://editors.eol.org/

eoearth/wiki/Commensalism.

Wolin CL, Lawlor LR. Models of facultative mutualism: density effects. Am. Nat. 1984; vol.

:843-862.

Sun GQ. Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 2016; vol.85:1-12. doi: 10.1007/s11071-016-2671-y

Kharouba HM, Ehrlénc J, Gelmand A, Bolmgrene K, Allenf JM, Traversg SE, Wolkovichh EM. Global shifts in the phenological synchrony of species interactions over recent decades. PNAS, 2018; vol. 115: 5211-5216.

Both C, Van Asch M, Bijlsma RG, Van den Burg A, Visser M. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?, J. Animal Ecol. 2009; vol. 78:73-83.

Damien M, Tougeron K. Prey-predator phenological mismatch under climate change. Current Opin. Insect Sci. 2019; vol. 35:60-68.

Stenseth NC, Durant JM, Fowler MS, Matthysen E, Adriaensen F, Jonzén N, Chan KS, Liu H, Laet JD, Sheldon BC, Visser ME, Dhondt AA. Testing for effects of climate change on competitive relationships and coexistence between two bird species. Proc. R. Soc. B. 2015; vol. 282:20141958.

McKinney AM, CaraDonna PJ, Inouye DW, Barr B, Bertelsen CD,Waser NM. Asynchronous changes in phenology of migrating broad-tailed hummingbirds and their early-season nectar resources. Ecology. 2012; vol. 93:1987-1993.

Olliff-Yang RL, Mesler MR. The potential for phenological mismatch between a perennial herb and its ground-nesting bee pollinator, AoB Plants. 2018; vol. 10, ply040.

Rafferty NE, CaraDonna PJ, Bronstein JL. Phenological shifts and the fate of mutualisms. Oikos. 2015; vol. 124: 14-21.

Belozerov VN. Seasonal aspects of the life cycles of pseudoscorpions (Arachnida, Pseudoscorpiones), Entmol. Rev.2013; 93:634-652.

Tanaka LK, Tanaka SK. Rainfall and Seasonal Changes in Arthropod Abundance on a Tropical Oceanic Island. Biotropica. 1982; vol. 14:114-123.

Ceccotti M, Miotti C, Pacini A, Signorini M, Giacobino A. Varroa destructor and Nosema sp seasonal dynamics in Apis mellifera colonies from temperate climate in Argentina. Revista Veterinaria. 2022; vol. 33:87-93.

Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Pejman R. Seasonality and the dynamics of infectious diseases, Ecol. Lett.2006; vol. 9:467-484.

Dumont Y, Thulliez J. Human behaviors: a threat to mosquito control?, Mathemat. Biosci.2016; vol. 281:9–23.

Díaz-Marín HG, López-Hernández F, Osuna O. Almost periodic solutions for seasonal cooperative systems, Annales Polonici Mathematic. 2022; vol. 128(1):1-14. doi:10.4064/ap210128-19-8

Wang BG, Qiang L, Wang, ZC. An almost periodic ross-macdonald model with structured vector population in a patchy environment. J. Math. Biol.2019; vol. 80, pp. 835-863.

Qiang L, Wang BG. An almost periodic Malaria transmission model with time delayed input of vector. Discrete Continuous Dynam Syst Series B, 2017; vol. 22, pp. 1525-1546.

Qiang L, Wang BG, Zhao XQ. Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equat. 2013; vol. 25, pp. 535-562.

Lin Q. Allee effect increasing the final density of the species subject to the Allee effect in a Lotka Volterra commensal symbiosis model, Advances in Difference Equations, vol. 196. 2018. doi: 10.1186/s13662-018-1646-3

Wu EX, Li L, Lin QF. A Holling type commensal symbiosis model involving Allee effect”, Commun. Math. Biol. Neurosci. 2018; vol. 6.

Bohr H. Almost Periodic Functions, Chelsea Publishing Company, New York, N.Y., 1947.

Corduneanu C, Gheorghiu N, Barbu V. Translated from the Romanian ed. by Gitta Bernstein and Eugene Tomer. Almost periodic functions, New York, Interscience Publishers; 1968.

Smith HL. Monotone Dynamical Systems: an introduction to the theory of competitive and cooperative systems, AMS, vol. 41, 1995.

Downloads

Published

2024-12-28

How to Cite

Osuna, O., & Villavicencio-Pulido, G. (2024). A seasonal commensalism model with a weak Allee effect to describe climate-mediated shifts. Selecciones Matemáticas, 11(02), 212 - 221. https://doi.org/10.17268/sel.mat.2024.02.01