Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography

Authors

  • Josué D. Díaz-Avalos Instituto de Matemática e Estatística, Universidade de Sao Paulo, Sao Paulo, Brasil.

DOI:

https://doi.org/10.17268/sel.mat.2023.01.09

Keywords:

Electrical impedance tomography, duality theory, complete electrode model, direct problem

Abstract

The duality theory of convex analysis is applied to the complete electrode model (CEM), which is a standard model in electrical impedance tomography (EIT). This results in a dual formulation of the CEM and a general error estimate. This new formulation of the CEM is written in terms of current fields and is shown to have a unique solution. Using this formulation, the general error estimate is proved, from which two a posteriori error estimates and a well known asymptotic result on CEM solutions are obtained. The first a posteriori error estimate assesses the accuracy of solutions to approximate problems, and the second one assesses the accuracy of approximate solutions. Numerical tests to apply this second estimate are performed, employing the finite element method to obtain approximate solutions.

References

Calderón AP. On an inverse boundary value problem. “Seminar on Numerical Analysis and its Application to Continuum Physics” in the ATAS of SBM. 1980; 65-73.

Adler A, Holder D. Electrical Impedance Tomography: Methods, History and Applications. Boca Raton: CRC Press; 2021.

Cheney M, Issacson D, Newell JC. Electrical Impedance Tomography. SIAM Rev. 1999; 41(1):85-101.

Cheng K, Isaacson D, Newell JC, Gisser DG. Electrode models for electric current computed tomography. IEEE Trans Biomed Eng. 1989; 36(9):918-924.

Somersalo E, Cheney M, Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992; 52(4):1023-1040.

Hadamard J. Le probléme de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Paris. 1932; 11:243-264.

Ekeland I, Teman R. Convex Analysis and Variational Problems. SIAM; 1999.

Repin S, Sauter S, Smolianski A. A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing. 2003; 70(3):205-233.

Repin S, Sauter S, Smolianski A. A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J Comput Appl Math. 2004; 164/165:601-612.

Han W. A posteriori error analysis for linearization of nonlinear elliptic problems and their discretizations. Math Meth Appl Sci. 1994; 17(7):487-508.

Han W. A posteriori error analysis via duality theory: with applications in modeling and numerical approximations. New York, NY: Springer; 2005.

Dardé J, Staboulis S. Electrode modelling: The effect of contact impedance. ESAIM: M2AN. 2016; 50(2):415-431.

Ma E. Integral formulation of the complete electrode model of electrical impedance tomography. IPI. 2020; 14(2):385-398.

Attouch H, Buttazzo G, Michaille G. Variational Analysis in Sobolev and BV Spaces: applications to PDEs and optimization. 2nd ed. Philadelphia, PA: SIAM; 2014.

Schuster T, Kaltenbacher B, Hofmann B, Kazimierski K. Regularization Methods in Banach Spaces. Berlin, Boston: De Gruyter; 2012.

Jin B, Xu Y, Zou J. A convergent adaptive finite element method for electrical impedance tomography. IMA J Num Anal. 2017; 37(3):1520-1550.

Downloads

Published

2023-06-14

How to Cite

Díaz-Avalos, J. D. (2023). Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography. Selecciones Matemáticas, 10(01), 90 - 101. https://doi.org/10.17268/sel.mat.2023.01.09