Khalil Conformable fractional derivative and its applications to population growth and body coolingin models
DOI:
https://doi.org/10.17268/sel.mat.2022.01.04Keywords:
Fractional derivatives, Khalil fractional derivative, fractional differential equationsAbstract
The objective of this article is to develop some results on conformable fractional derivatives, specifically the one known as Khalil’s conformable fractional derivative. Its origin, properties, comparisons with other fractional derivatives and some applications on population grow and Newton law of cooling models are studied.
References
Anastassiou GA. Fractional Differentiation Inequalities. New York: Springer; 2009.
Atangana A. Derivative with a New Parameter: Theory, Methods and Applications. London: Academic Press; 2016.
Bragdy M. On the Theory and Applications of Fractional Differential Equations[Doctoral Thesis]. Algeria: Universit´e Larbi Ben M’hidi d’Oum-El-Bougadi; 2013.
Diethelm K. The Analysis of Fractional Differentiasl Equations. New York: Springer; 2010.
Hernández Hernández J E, Vivas-Cortez M. Hermite-Hadamard inequalities type for Raina’s fractional integral operator using n-convex functions. Revista Matemática: Teoría y Aplicaciones 2019; 26(1):1-19.
Hernández Hernández JE, Vivas-Cortez M. On a Hardy’s inequality for a fractional integral operator. Annals of the University of Craiova, Mathematics and Computer Science Series 2018; 45(2):232-242.
Ishteva MK. Properties and Applications of Caputo Fractional Operator[Master Thesis]. Bulgaria: Universität Karlsruge; 2005.
Khalil R, Al-Horani M, Yousef A, Sababheh M. A new definition of fractional derivative. Journal of Computational and Applied Mathematics 2014; 264:65-70.
Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies. Amsterdam: Elsevier; 2006.
Leibniz GW. Letter from Hannover to G. F. A. L’Hˆopital. Olms Verlag 1849, 2(1):301-302.
Nápoles JE, Guzmán PM, Lugo L , Kashuri A. The local non conformable derivative and Mittag Leffler function. Sigma J. Eng. & Nat. Sci. 2020; 38(2):1007-1017.
Riemann B. Versuch einer allgemeinen Auffassung der Integration und Differentiation, 1847. In: Weber H (ed) Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass, Dover Publications; 1876.
Riesz M, L’integrale de Riemann-Liouville et le probleme de Cauchy. Acta Mathematica, 1949, 81(1):1-20.
Ross B, The development of fractional calculus 1695 to 1900. Historia Math. 1977, 4(1): 75-89.
Samko SG, Kilbas AA, Marichev OI, Fractional Integrals and Derivatives. Amsterdam: Gordon and Breachs Science Publishers; 1993.
Vivas-Cortez M, Velasco J, Hernández Hernández JE. Certain new results on the Khalil conformable fractional derivative. Matua, Revista de la Universidad del Atlántico. 2020; 7(1):1-8.
Vivas-Cortez M, Kashuri A, Hernández Hernández JE. Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions. Symmetry 2020; 12:1-17.
Vivas-Cortez M, Nápoles J E, Hernández Hernández J E, Velasco J, Larreal O. On Non Conformable Fractional Laplace Transform. Appl. Math. Inf. Sci. 2021; 15(4):403-409.
Weyl H. Bemerkungen zum Begriff des Differential quotienten gebrochener Ordnung. Vierteljahresschrift der Naturforsch. Ges. Zurich 1917; 62(296):10-27.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Selecciones Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.