Analysis and simulation of an extended SEIR mathematical model with vaccination for the spread of SARS-COV-2

Authors

  • Jennifer Madge Escobedo UNMSM, Facultad de Ciencias Matemáticas, Lima, Perú.
  • Jhelly Reynaluz Pérez Núñez UNMSM, Facultad de Ciencias Matemáticas, Lima, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2022.02.09

Keywords:

Covid-19 , differential equation, basic reproduction number, epidemiological model

Abstract

This article analyzes the dynamic of an extended SEIR model for the spread of COVID-19 considering a system of 7 differential equations whose stages are susceptible, exposed, infected, quarantined, recovered, dead and vaccinated. The necessary and sufficient conditions are determined for non-negativity, delimitation, existence and uniqueness of the solution of the model, local stability of the equilibrium points and the next generation matrix method. The simulations made in Python complement the qualitative analysis of the mathematical model to conclude the behavior of the virus spread over time; the information shown in this work could also be useful for the development of new prevention measures.

References

Armstrong E, Runge M, Gerardin J. Identifying the measurements required to estimate rates of COVID-19 transmission, infection, and detection, using variational data assimilation. Infect. Dis. Model. 2020; 6:133–147.

Bjørnstad ON, Shea K, Krzywinski M, Altman N. The SEIRS model for infectious disease dynamics. Nature Methods. 2020; 17(6):557-559.

Centro Saudita para la Prevención y el Control de Enfermedades. COVID-19: Actualización Diaria[Internet][accesado: 18 de junio de 2021]. Disponible en https://covid19.cdc.gov.sa/dailyupdates.

Ghostine R, Gharamti M, Hassrouny S, Hoteit I. An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter[Internet]. Mathematics 2021, 9(6):636. Disponible en https://doi.org/10.3390/math9060636

Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 1927, 115, 700–721.

Ministerio de Salud Gobierno del Perú. Vacuna COVID-19 en el Perú[Internet][accesado 27 de agosto de 2021]. Disponible en https://www.minsa.gob.pe/reunis/data/vacunascovid19.asp.

Ministerio de Salud Gobierno del Perú. Sala Situacional Covid 19 en Perú[Internet][accesado 27 de agosto 2021]. Disponible en https://covid19.minsa.gob.pe/sala situacional.asp.

Núñez JP, Cruz RL. (2017). Análisis Matemático de una cadena alimenticia-presa-depredador control-biológico. Selecciones Matemáticas. 2017; 4(01):112-123. https://doi.org/10.17268/sel.mat.2017.01.11

Pérez J, Vásquez L. Modelo Huésped-Vector: Análisis de estabilidad y simulaciones. Selecciones Matemáticas [Internet]. 2018; 5(2):175-192. Disponible en http://dx.doi.org/10.17268/sel.mat.2018.02.05

Pino N, Soto P, Quispe. Un Modelo Matemático SIR-D Segmentado para la Din´amica de Propagación del Coronavirus (COVID-19) en el Perú. Selecciones Matemáticas [Internet]. 2020; 7(1):162-171. Disponible en https://doi.org/10.17268/sel.mat.2020.01.14

Pino Romero N. Análisis y simulación numérica de un modelo matemático SI con retardo discreto para las enfermedades de transmisión sexual[Magister Tésis].[Lima]: Universidad Nacional Mayor de San Marcos; 2017. 170p. Disponible en

http://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/5735/Pino rn.pdf?sequence=1.

Sesterhenn JL. Adjoint-based data assimilation of an epidemiology model for the covid-19 pandemic in 2020[Internet][Accesado: 27 de agosto 2021]. arXiv 2020. Disponible en https://doi.org/10.48550/arXiv.2003.13071

Published

2022-07-27

How to Cite

Madge Escobedo, J., & Pérez Núñez, J. R. (2022). Analysis and simulation of an extended SEIR mathematical model with vaccination for the spread of SARS-COV-2. Selecciones Matemáticas, 9(01), 121 - 136. https://doi.org/10.17268/sel.mat.2022.02.09