A numerical study of the Timoshenko model with dissipative mechanisms

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.01.17

Keywords:

Exponential Stability, Dissipative Mechanisms, Finite Differences

Abstract

In this work we gather works from the literature that present the qualitative study via linear semigroups to the Timoshenko Beams System with dissipative mechanisms. Such problems do not have an analytical solution, but with the use of the exponentials theory of non-limited operators and Functional Analysis tools, it is possible to perform the asymptotic analysis for the models presented. Therefore, the objective of the work is accomplish a numerical analysis, using finite difference methods. We show that the qualitative results, proven by the semigroup theory, are verified for beam with concrete material and aluminum material.

Author Biography

Bruna T. S. Sozzo, Laboratório Nacional de Computacao Científica, Petrópolis/RJ - Brasil.

References

Timoshenko SP. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars. Philosophical Magazine. 1921; 41:744-746.

Weaver W, Timoshenko SP, Young DH. Vibration Problems in Engineering. A Wiley-Interscience publication; 1990.

Sozzo BTS. Boa Colocacao para Equacoes Diferenciais Parciais via Semigrupos Lineares. Dissertacao de Mestrado em Matemática Aplicada e Computacional. Londrina. Universidade Estadual de Londrina, 2018.

Saito TO. Sistema de Timoshenko com Amortecimento Indefinido na Oscilacao Transversal. Dissertacao de Mestrado em Matemática Aplicada e Computacional. Londrina. Universidade Estadual de Londrina, 2016.

Liu Z, Zheng Z. Semigroups associated with dissipative systems. Chapman & Hall/CRC, 1999.

Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext,New York: Springer, 2010.

Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. 3Island Press, 1992.

Rivera J, Racke R. Global stability for damped Timoshenko systems. Discrete and Continuous Dynamical Systems, 2003.

Cunha CAR. Semigrupos Aplicados a Sistemas Dissipativos em EDP. Florianópolis, SC. 2007.

Kreysizg E. Introductory Functional Analysis with Applications. Wiley Classics Library, 1989.

Rivera J. Energy Decay Rates in Linear Thermoelasticity. Funkcialaj Ekvacioj, Serie Internacial, 1996.

Timoshenko S. History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures. New York: McGraw-Hill, 1953.

Raposo CA, Ferreira J, Santos ML, Castro NNO. Exponential stability for the Timoshenko system with two weak dampings. Applied Mathematics Letters. 2005; 18:535-541.

Almeida Junior DS, Santos ML, Rivera J. Stability to weakly dissipative Timoshenko systems. Math. Meth. Appl. Sci. 2013; 36:1965–1976.

Soufyane A. Stabilisation de la poutre de Timoshenko. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics. 1999; 328:731-734.

Khodja F, Benabdallah A, Rivera J, Racke R. Energy decay for Timoshenko system of memory type. Journal of Differential Equations, J. Differential Equations. 2000; 194:82-115.

Rivera J. Estabilizacao de Semigrupos e Aplicacoes. Rio de Janeiro-Brasil: Laboratório Nacional de Computacao Científica; 2008.

Shi D, Feng, D. Exponential decay of Timoshenko beam with locally distributed feedback. IMA Journal of Mathematical Control and Information. 2001; 18:395–403.

Hibbeler RC. Resistencia dos materiais. Brasil: Prentice Hall; 2010.

Almeida Júnior DS. Estabilidade Assintótica e Numérica de Sistemas Dissipativos de Vigas de Timoshenko e Vigas de Bresse. Curso de Pós Graduacao em Modelagem Computacional, Laboratório Nacional de Computacao Científica; 2009.

Published

2020-07-25

How to Cite

S. Sozzo, B. T., & Acasiete Q., F. H. (2020). A numerical study of the Timoshenko model with dissipative mechanisms. Selecciones Matemáticas, 7(01), 176-182. https://doi.org/10.17268/sel.mat.2020.01.17

Issue

Section

Communications