Constant elasticity of variance model: An application in the stock market of Lima

Authors

  • Dennis Quispe S. Departamento Académico de Matemáticas, Universidad Nacional de Trujillo, Perú.
  • Obidio Rubio Instituto de Investigación en Matemáticas, Universidad Nacional de Trujillo, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2022.01.06

Keywords:

Constant elasticity of variance, stochastic differential equation, elasticity factor, stochastic Runge Kutta method, Lima stock exchange

Abstract

The objective of this article is to present the constant elasticity of variance model, its main probabilistic aspects, and we implement the stochastic Runge Kutta method to simulate the sample trajectories based on the data of the CREDITC1 asset of the Bank of Credit from Perú taken from the Lima stock exchange.

References

Beckers S. The constant elasticity of variance model and its implications for option pricing. The J. of Finance. 1980; 35(3):661-673.

Black F, Scholes M. The pricing of options and corporate liabilities. J. Political Economic. 1973; 81(3):637-654.

Bolsa de Valores de Lima [Internet], información de Bolsa. Lima. 2022 [accesado 27 de mayo 2022]. Disponible en https://www.bvl.com.pe/

Burrage P, Burrage M. Order conditions of stochastic Runge Kutta methods by B series. SIAM J. Numer. Anal. 2000; 38(5):1626-1646.

Campbell J. Stock returns and the term structure, J. Financial Economics. 1987; 18(2):373-399.

Chen RR, Lee CF. A constant elasticity of variance family of stock price distributions in option pricing: Review and integration. J. Financial Studies. 1993; 1:29-51.

Cox J. The constant elasticity of variance option pricing model. The J. of Portfolio Management, 1996; 22:15-17.

Delbaen F, Shirakawa H. A Note of Option Pricing for Constant Elasticity of Variance Model. Asia-Pacific Financial Markets. 2002; 9:85-99.

Emanuel D, Macbeth J. Further results on the constant elasticity of variance call option pricing model, J. Financial and Quantitative Analysis. 1982: 17(4):533-554.

Hsu Y, Lin T, Lee C. Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation. Math. and Comp. in Simulation. 2008; 79(1):60-71.

Karatzas I, Shreve S. Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. 2da. Edition. Springer-Verlag; 1998.

Quispe D. Probabilidad de transición y el enfoque chi cuadrado no central del modelo de valoración de opciones con elasticidad constante de la varianza[tésis de maestría].[Trujillo]. Universidad Nacional de Trujillo, 2016.

Rubio O. La Integral de Ito y ecuaciones diferenciales estocásticas[Tésis de maestría].[Lima]. Universidad Nacional de Ingeniería, 1990.

Published

2022-07-27

How to Cite

Quispe S., D., & Rubio, O. (2022). Constant elasticity of variance model: An application in the stock market of Lima. Selecciones Matemáticas, 9(01), 79 - 90. https://doi.org/10.17268/sel.mat.2022.01.06

Most read articles by the same author(s)

<< < 1 2