Bayesian nutritional model for morbidity prognosis in newborns
DOI:
https://doi.org/10.17268/sel.mat.2019.02.19Keywords:
Newborn morbidity, Bayesian networks, morbidity prognosisAbstract
This research aimed to formulate a Bayesian model based on the Naive Bayes algorithm, to predict morbidity in neonates in a case study of pregnant mothers in Metropolitan Lima. The study uses mathematical algorithms for the exploitation of information in prevention of possible health-related problems. 13 predictive nutritional variables proposed by Krauss were raised. The model consists first of all, in the collection of the nutritional information in a controlled way of the pregnant women involved, then, the information is analyzed to determine the relationship of the most influential variables for the model, then the Bayesian model of acyclic characteristic was constructed and directed composed of nodes and edges, because the variables directly affected to the morbidity of the neonate are known and finally the model affected by the statistical results of the nutritional variables is validated, as part of the process of formulating the model and by experts judgment in the topic. The results conclude that the predictive variables that directly influence are: breads, sugars, oils, fats and salt; and conversely: fruits, water, vegetables and vegetables; the model also predicts the morbidity of the newborn with a probability of 92% and an error of 8.0%.References
Almira, A.G. Embarazo: diagnóstico, edad gestacional, y fecha del parto. MEDISAN. 2008; 12(4):10. https://www.redalyc.org/pdf/3684/368445249017.pdf.
Alexander, M., & Alkema, L. Global estimation of neonatal mortality using a Bayesian hierarchical splines regression model. Demographic Research. 2018; 38(1):335–372. https://www.demographic-research.org/volumes/vol38/15/.
Avila J. & Machuca V. Mortalidad en el Perú y sus departamentos. Dirección General de Epidemiología- Ministerio de Salud. 2013. http://www.dge.gob.pe/portal/docs/Mortalidad_neonatal11_12.pdf.
Gamez, A., Moral, S., & Salmerón. A. Advances in Bayesan Networks. Studies in Fuzziness and Soft Computing. 2004; Volume 146, DOI10.1007/978-3-540-39879-0.
Holmes D. & Jain L. Innovations in Bayesian Networks. Theory and Applications, University of California, 2008; , Volume 156, DOI10.1007/978-3-540-85066-3.
Kelly, D., & Smith, C. Advanced Methodologies for Bayesian Networks (Vol. 9505). Springer London. New York, 2011. DOI10.1007/978-1-84996-187-5.
Marando, R., Seni, J., Mirambo, M. M., Falgenhauer, L., Moremi, N., Mushi, M. F., Mshana, S. E. Predictors of the extended-spectrum-beta lactamases producing Enterobacteriaceae neonatal sepsis at a tertiary hospital, Tanzania. International Journal of Medical Microbiology. 2018; 308(7):803–811. https://doi.org/10.1016/j.ijmm.2018.06.012.
Nagarajan, R., Scutari, M. Bayesian networks in R with applications in systems biology. Springer. New York, 2013. DOI10.1007/978-1-4614-6446-4.
Odalis, D., Caridad, D., Milián, A., Yamila, D., Caraballo, S., & Orlando, R. Morbilidad y mortalidad en hijos de madres en edades extremas. INFOMED. 2016; 10(4):27–35. http://www.revactamedicacentro.sld.cu/index.php/amc/article/view/760/1004
Olpo. A. , Louazda. F.,Rifo. L., Stern. J. & Lauretto. M. Interdisciplinary Bayesian Statistics. Springer Heidelberg. 2015. 10.1007/978-3-319-12454-4.
Raymond. J. & Mahan. K. Krauses Food & the Nutrition Care Process. Elsevier Inc. All Rights Reserved. Barcelona, España. 2017.
Ross C. & Taylor C. DIETARY REFERENCE INTAKES. Calcium Vitamin D. Institute of Medicine. of the National Academies, 2011. https://www.ncbi.nlm.nih.gov/books/NBK56070/pdf/Bookshelf_NBK56070.pdf.
Sanabria, A., Nodarse, A., Carrillo, L,.y Couret, M., Sánchez & N.; Guzmán, R. Morbilidad en el recién nacido menor de 1 500 g. Revista Cubana de Obstetricia y Ginecologia. 2012; 38(4):478-487. http://scielo.sld.cu/pdf/gin/v38n4/gin05412.pdf.
Suzuki J. & Ueno M. Advanced Methodologies for Bayesian Networks. Second International Workshop, AMBN 2015. Springer Yokohama, Japan.2015; 16–18, Proceedings. DOI10.1007/978-3-319-28379-1.
Xu, Y., Choi, J., Dass, S., & Maiti, T. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks: Online Environmental Field Reconstruction in Space and Time. Springer. Cham Heidelberg, 2016. DOI:10.1007/978-3-319-21921-9.
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.