Estimation of daily solar radiation for the city of Bagua, Amazonas region, Perú

Authors

  • Lenin Quiñones H. Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. http://orcid.org/0000-0002-0953-328X
  • Miguel Barrena G. Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. http://orcid.org/0000-0002-4200-4101
  • Wildor Gosgot A. Instituto de Investigación para el Desarrollo Sustentable en Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. http://orcid.org/0000-0002-7301-2809
  • Rolando Salas L. Instituto de Investigación para el Desarrollo Sustentable en Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. http://orcid.org/0000-0003-2184-6761
  • Manuel Milla P. Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas - Perú. http://orcid.org/0000-0003-3931-9804

DOI:

https://doi.org/10.17268/sel.mat.2019.02.18

Keywords:

Solar radiation, Simulation, Matlab, Amazonas

Abstract

The solar radiation that reaches the earth is the fundamental source of renewable energy in nature, therefore, knowing the local solar radiation is essential for many applications. The objective of this study was to model the behavior of daily solar radiation in the city of Bagua, which allows us to plan and design strategies oriented towards the use of the primary source of renewable energy. For this, the Fernández-Zayas model has been used, which considers the parameters of the monthly  average of the maximum global solar radiation and the length of the solar day. The methodology is of the analytical type and consisted of three phases: The first, data collection and filtering of the meteorological station of the Toribio Rodríguez de Mendoza National University of Amazonas that is located in the study area; in the second, the model was implemented using the MATLAB / GUI interface, obtaining the simulation of solar radiation; and in the third, the model was validated by error goodness statistics and table t. The estimate of daily solar radiation was calculated and discussed. The results obtained are useful for any application of solar energy in the city of Bagua, Amazonas region, Peru.

References

Akpabio, L. E., Etuk, S. E. Relationship between global solar radiation and sunshine duration for Onne, Nigeria. Turkish Journal of Physics, 2003; 27(2):161-167.

Al Shamisi, M. H., Hejase, A. H. Using MATLAB to develop artificial neural network models for predicting global solar radiation in Al Ain City–UAE. En Engineering education and research using MATLAB. IntechOpen.

Almorox, J. Y., Hontoria, C. Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management. 2004; 45(9-10):1529–1535.

Altas, I. H., Sharaf, A. M. A photovoltaic array simulation model for matlab-simulink GUI environment. International Conference on Clean Electrical Power. 2007; 341–345.

Badescu, V. Modeling Solar Radiation at the Earth Surface. Springer 1.a ed, 2008.

Bakirci, K. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy. 2009;

(4):485–501.

Benghanem, M., Mellit, A., Alamri, S. N. ANN-based modelling and estimation of daily global solar radiation data: A case study. Energy conversion and management. 2009; 50(7):1644–1655.

Besharat, F., Dehghan, A. A., Faghih, A. R. Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews. 2013; 21:798–821.

Chapra, S. C., Canale, R. P. Métodos numéricos para ingenieros. McGraw-Hill, 2007.

Davies, J. A., Schertzer, W., Nunez, M. Estimating global solar radiation. Boundary-layer meteorology. 1875; 9(1):33–52.

El-Sebaii, A. A., Trabea, A. A. Estimation of global solar radiation on horizontal surfaces over Egypt. Egypt. J. Solids. 2005; 28(1):163–175.

Ertekin, C., Yaldiz, O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Conversion and Management. 2000; 41(4)):311–330.

Fernández, G. M., Montejo, I. B., Castro, D. M. Evaluacion de un metodo de estimacion de la radiacion solar a partir de registros heliograficos en las provincias habaneras. Revista Cubana de Meteorología. 2003; 10(1).

Fernández, J. L. Cálculo de la Radiación Solar Instantánea en la República Mexicana. Universidad Nacional Autónoma de México, 1983.

Grossi, H. Distribución de la radiación solar global en argentina. Análisis de información Energías Renovables y Medio Ambiente. 2003; 4):13-17.

Hernández, O. A., Peralta, T. M., Correa, J. M. La radiación solar global en la provincia de Loja, evaluación preliminar utilizando el método de Hottel Ingenius. 2014; 11:25–31.

Jin, W.Yezheng, Z., Gang, Y. General formula for estimation of monthly average daily global solar radiation in China. Energy Conversion and Management. 2005; 46(2):257–268.

Keller, B., Costa, A. M. A Matlab GUI for calculating the solar radiation and shading of surfaces on the earth. Computer Applications in Engineering Education. 2011; 19(1):161–170.

Martínez, A., Ortega, J., Juan, J., Pajuelo, J., Moreno, M. Modelos de estimación de radiación solar global con limitación de datos y su distribución espacial en Castilla-La Mancha. Información Técnica Económica Agraria. 2012; 108(4):426–449.

Rehman, S., Mohandes, M. Modelos de estimación de la radiación solar para el altiplano central de Bolivia. Energy Policy. 2008; 36(2):571–576.

Sabziparvar, A. A., Shetaee, H. Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Energy. 2008; 32(5):649–655.

Samuel, T. Estimation of global radiation for Sri Lanka. Journal of Solar Energy Science and Engineering. 1991; 47(5).

Stone, R. J. Improved statistical procedure for the evaluation of solar radiation estimation models. Solar energy. 1993; 51(4):289–291.

Torrez, R., Burgoa, A., Ricaldi, E. Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Revista Boliviana de Física. 2013; 23:1562-3823.

Tymvios, F. S., Jacovides, C. V., Michaelides, S. C., Scouteli, C. Comparative study of Angstrom’s and artificial neural networks methodologies in estimating global solar radiation. Solar energy. 2005; 78(6):752–762.

Yang, J., Meng, B. , Li, N. Resources calculation of solar radiation based on matlab. Energy Engineering. 2011; 1:35–38.

Yorukoglu, M., Celik, A. N. A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Conversion and Management. 2006; 47(15-16):2441–2450.

Published

2019-12-24

How to Cite

Quiñones H., L., Barrena G., M., Gosgot A., W., Salas L., R., & Milla P., M. (2019). Estimation of daily solar radiation for the city of Bagua, Amazonas region, Perú. Selecciones Matemáticas, 6(02), 320-328. https://doi.org/10.17268/sel.mat.2019.02.18

Issue

Section

Communications