Medidas de robustez y estabilidad para problemas de scheduling con incertidumbre: Una revisión del estado del arte

Rafael Asmat U., Edmundo Vergara M., Flabio Gutiérrez S.


En este trabajo se resumen los diversos enfoques y políticas más usados en la literatura para medir la robustez y la estabilidad de soluciones en problemas de scheduling. Estas políticas se basan en análisis de problemas de scheduling proactivos con un enfoque de planeación de escenarios. Además, se presentan y revisan los estudios más recientes desarrollados para medir la robustez y la estabilidad de soluciones a problemas de scheduling con incertidumbre y se sugieren futuras líneas de investigación.

Palabras clave

Robustez; Estabilidad; Problema de Scheduling; Incertidumbre; Reactivo; Proactivo

Texto completo:



Al Fawzan, M. and Haouari M. A bi-objective model for robust resource-constrained project scheduling. International Jounal of Production Economics, 9, 175-187, 2005

Artigues C., Billaut, J.C. and Esswein, C. Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165, 314-328, 2005

Barber, F. and Salido, M.A. , Robusteness, stability, recoverability and realiability in constraint satisfaction problems. Knowledge and Information Systems, 44(3), 719-734, 2015.

Chtourou, H. and Haouari, M. , A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering, United Kingdom, 55, 183-194, 2008

Climent, L. Wallace, R., Salido, M. and Barber, F. , Finding robust solutions for constraint satisfaction problem with discrete and ordered domains by coverings. Artificial Intelligence Review, 1-26, 2015.

Daniels, R.L. and Carillo, J. E. _-robust scheduling for single machine systems with uncertain processing times. IIE Transactions, 29, 977-985, 1997.

Daniels, R. and Kouvelis, P. Robust scheduling to hedge against processing time uncertainty in single-stage production. Management Science, 41(2), 363-376, 1995.

Glumac, S. and Kovacic, Z. Relative consistency and robust stability measures for sequential co-simulation. Proceedings of the 13th International Modelica Conference, Regensburg, Germany, 2019.

Guo, B. and Nonaka, Y. Rescheduling and optimization of schedules considering machine failures. International Journal of Production Economics, 60(61), 503-513, 1999.

Goren, S. and Sabuncuoglu, I. Robustness and stability measures for scheduling: single-machine environment. IIE Transactions, 40(1), 66-83, 2008.

Goren, S. and Sabuncuoglu, I Optimization of schedule robustness and stability under random machine breakdowns and processing time variability. IIE Transactions, 42(3), 203-220, 2009.

Herroelen, W. and Leus, R. Project scheduling under uncertainty, survey and research potentials. European Journal of Operational Research, N165(2), 289-306, 2005

Herrman, H. N, Scheinder, C., Moreira, A. Andrade, Jr. J. and Havlin, S. Onion-like network topology enhances robustness against malicious attacks. Journal of Statistical Mechanics: Theory and Experiment, 2011(1), 1-7, 2011.

Jensen, M. T. and Hansen, T. K. Robust solutions to job shop problems. Proceedings of the Congress of Evolutionary Computation, 1138-1144, 1999.

Jensen, M. T. Improving robustness and flexibility of tardiness and total flow time job shops using robustness measures. Applied Soft Computing, 1, 35-32, 2001.

Jensen, M.T. Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(3), 275-288, 2003.

Kasperski, A. Minimizing maximal regret in the single machine sequencing problem with maximim lateness criterion. Operations Research Letters, 33, 431-436, 2005.

Kitano, H. Toward a theory of biologial robustness. Mol Syst. Biol, 3(1), 137, 2007.

Kutanoglu, E. and Sabuncouglu, I. Experimental investigation of iterative simulation-based scheduling in a dynamic and stochastic job shop. Journal of Manufacturing Systems, 20(4), 264-279, 2001.

Kolisch, R., Schwindt, C. and Sprecher, A. Benchmark instances for project scheduling problems In J.Weglarz (Ed.). Handbook on recent advances in project scheduling. Dordrecht: Kluwer, 1998.

Lawler, E. Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Ann. Discrete Math, 2, 75-90, 1978.

Li, W. and Glazebrook, K.D. On stochastic machine scheduling with general distributional assumptions. European Journal of Operational Research, 105, 525-536, 1998.

Leung, J. Y. T. and Pinedo, M. A note on scheduling parallel machines subject to breakdown and repair. Naval Research Logistics, 51(1), 60-71, 2004.

Liao, F. and van Wee, B. Accesibility measures for robustness of the transport system. Transportation, 44, 1213-1233, 2017.

Leon, V. J. ,Wu, S.D. and Storer, R. , Robustness measures and robust scheduling for job shops. IIE Transactions, 26(5), 32-43, 1994

Mehta, S. V. and Uzsoy, R. Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics and Automation, 14(3), 365-378, 1998.

Mehta, S.V. and Uzsoy, R. Predictable scheduling of a single machine subject to breakdowns. Int. J. Computer Integrated Manufacturing, 12(1), 15-38, 1999.

O’Donovan, R., Uzsoy, R. and Mckay K. N. Predictable scheduling of a single machine with breakdowns and sensitive jobs. Int. J. Prod. Res., 37(18), 4217-4233, 1999.

Rossi, F., van Beek, P. and Walsh, T. A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics, 25(12), 168-179, 2006.

Sabuncuoglu, I. and Goren, S. Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138-157, 2009.

Sabuncuoglu, I. and Goren, G. Generating Robust and Stable Schedules in a Single Machine Environment. Industrial Engineering Research Conference, 2004.

Sevaux, M. and Sorensen, K. A genetic algorithm for robust schedules in a one-machine environment with ready times and due dates. OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2, 129-147, 2004.

Sotskov, Y., Sotskova, N.Y. and Werner, F. Stability of an optimal schedule in a job shop. Omega: The International Journal of Management Science, 25(4), 397-414, 1997

Taillard, E. Benchmark for basic scheduling problems. Eur. J. Oper Res, 64(2), 278-285, 1993

Van der Vonder, S., Demeulemeester, E. and Herroelen, W. Proactive heuristic procedures for robust project shceduling: An experimental Analysis. European Journal of Operational Research, 189(3), 723-733, 1998.

Verfaillie, G., and Jussien, N. Constraint solving in uncertain and dynamic environment: a survey. Constraints 10(3), 253-281, 2005.

Wallace, R., Grimes, D. and Freuder, E. Solving dynamic constraint satisfaction problems by identifying stable features.

Proceedings of International Joint Conferences on Artificial Intelligence (1JCAI-09), 621-627, 2009.

Wiggins, S. Introduction to applied nonnlinear dynamical systems and chaos, Springer, New Yor, U.S.A., 1990.

Wu, S. D., Storer, R. N. and Chang, P. A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness. Operations Research, 47(1), 113-124, 1999.

Wu, D.D., Storer, R. N. and Chang, P. One-machine rescheduling heuristics with efficiency and stability as criteria. Computers Ops Res., 20(1), 1-14, 1993.

Yang, J. and Yu, G. On the robust single machine scheduling problem. Journal of Combinatorial Optimization, 6, 17-33, 2002.


Enlaces refback

  • No hay ningún enlace refback.

Short Title: Sel. mat.


 ISSN:  2411-1783  Versión Electrónica.                      


Derechos reservados © 2014 Departamento de Matemáticas.

Para la distribución y cosecha de los Metadatos de nuestros artículos, usar el Protocolo de Interoperabilidad OAI-PMH: 



Selecciones Matemáticas es una revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Attribution-NoComercial-ShareAlike 4.0.