Enhancement of the Multi-Particle Collision Algorithm by mechanisms derived from the Opposition-Based Optimization

Authors

  • Reynier Hernández Torres Associated Laboratory for Computing and Applied Mathematics (LAC), National Institute for Space Research (INPE), Sao José dos Campos, Sao Paulo, Brazil http://orcid.org/0000-0003-1554-5145
  • Haroldo F. Campos Velho Associated Laboratory for Computing and Applied Mathematics (LAC), National Institute for Space Research (INPE), Sao José dos Campos, Sao Paulo, Brazil http://orcid.org/0000-0003-4968-5330
  • Eduardo F. P. da Luz Centro Nacional de Monitoramento e Alertas de Desastres Naturais (Cemaden), Sao José dos Campos, Sao Paulo, Brazil http://orcid.org/0000-0003-2081-1831

DOI:

https://doi.org/10.17268/sel.mat.2019.02.03

Keywords:

Stochastic algorithm, Metaheuristic, Opposition-Based Learning, Reflection-Based Learning, Multi-Particle Collision Algorithm

Abstract

New versions of the metaheuristic Multi-Particle Collision Algorithm (MPCA) are presented. In order to provide more effective candidate solutions for an optimization problem, the concept of opposition and reflection is introduced to improve the capacity to find a solution in the search space. Four different strategies to compute the reflected and opposite points are implemented. The performance of all implementations is evaluated over thirty objective functions with different complexities, using serial and parallel versions of the algorithms.

References

Ahandani, M. A. Opposition-based learning in the shuffled bidirectional differential evolution algorithm. Swarm and Evolutionary Computation, 26 (2016) 64–85.

Al-Qunaieer, F. S., Tizhoosh, H. R., Rahnamayan, S. Opposition based computing–a survey. 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, 2010.

Aluffi-Pentini, F., Parisi, V., Zirilli, F. Global optimization and stochastic differential equations. Journal of optimization theory and applications, 47(1) (1985) 1–16.

Anochi, J. A. and Campos Velho, H. F. Optimization of feedforward neural network by Multiple Particle Collision Algorithm. 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI), IEEE, 2014 (128–134).

Anochi, J. A., Campos Velho, H. F., Furtado, H. C. M., Luz, E. F. P. Self-configuring Two Types of Neural Networks by MPCA. Journal of Mechanics Engineering and Automation, 5 (2015) 112–120.

Antoniou, A., Lu, W.-S. Practical optimization: algorithms and engineering applications. Springer Science & Business Media, 2007.

Beyer, H.-G. The theory of evolution strategies. Springer Science & Business Media, 2013.

Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE transactions on evolutionary computation, 10(6) (2006) 646–657.

Chelouah, R., Siarry, P. A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics 6(2) (2000), 191–213.

Das, S., Biswas, A., Dasgupta, S., Abraham, A. Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Foundations of Computational Intelligence, Springer 3, (2009), 23–55.

Das, S., Suganthan, P. N. Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), (2011), 4–31.

De Castro, L. N., Timmis, J. Artificial immune systems: a new computational intelligence approach. Springer Science & Business Media, 2002.

Mendiburu, F., Simon, R. Agricolae-ten years of an open source statistical tool for experiments in breeding, agriculture and biology. Technical report, PeerJ PrePrints, 2015.

Dorigo, M. and Birattari, M. Ant colony optimization. Encyclopedia of machine learning, Springer (2010) 36–39.

Dorigo, M., Birattari, M., St¨utzle, T. Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4) (2006) 28–39.

Du, K.-L., Swamy, M. N. S. Search and Optimization by Metaheuristics. Springer, 2016.

Eberhart, R. C., Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science, New York, 1 (1995) 39–43.

Echevarría, L. C., Llanes Santiago, O., Silva Neto, A. J. Aplicación de los algoritmos Evolución Diferencial y Colisión de Partículas al diagnóstico de fallos en sistemas industriales. Revista Investigación Operacional, 33(2) (2012) 160–172.

Ergezer, M., Simon, D., Du, D. Oppositional biogeography-based optimization. IEEE International Conference on Systems, Man and Cybernetics (SMC 2009)., IEEE, (2009) 1009–1014.

Fogel, L. J. Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming. John Wiley & Sons, Inc., New York, 1999.

Gao, W.-F., Liu, S.-Y. A modified artificial bee colony algorithm. Computers & Operations Research, 39(3) (2012) 687–697.

Gao, W.-F., Liu, S.-Y., Huang, L.-L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Transactions on Cybernetics, 43(3) (2013) 1011–1024.

Gao,W.-F., Liu, S.-Y., Huang, L.-L. A novel artificial bee colony algorithm with powell’s method. Applied Soft Computing, 13(9) (2013), 3763–3775.

Gao, W., Chan, F. T. S., Huang, L. L., Liu, S. Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood. Information Sciences, 316 (2015) 180–200.

Geem, Z. W., Kim, J. H., Loganathan, G. V. A new heuristic optimization algorithm: harmony search. Simulation, 76(2) (2001) 60–68.

Guo, Z., Wang, S., Yue, X., Yang,H. Global harmony search with generalized opposition-based learning. Soft Computing, 21(8) (2017), 2129–2137.

Guo, Z., Yue, X., Zhang, K., Deng, C., Liu, S. Enhanced social emotional optimisation algorithm with generalised opposition–based learning. International Journal of Computing Science and Mathematics, 6(1) (2015) 59–68.

Han, L., He, X. A novel opposition-based particle swarm optimization for noisy problems. Third International Conference on Natural Computation (ICNC 2007), IEEE, 3 (2007) 624–629.

Holland, J. H. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA, 1992.

Jamil, M., Yang, X.-S. A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2) (2013) 150–194.

Fister Jr., I., Yang, X.-S., Fister, I., Brest, J., Fister, D. A brief review of nature-inspired algorithms for optimization. CoRR, abs/1307.4186, 2013.

Kalra, S., Sriram, A., Rahnamayan, S., Tizhoosh, H. R. Learning opposites using neural networks. CoRR, abs/1609.05123, 2016.

Kang, F., Li, J., Ma, Z. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Information Sciences, 181(16) (2011) 3508–3531.

Karaboga, D. An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, Engineering faculty, Computer Engineering Department, 2005.

Karaboga, D., Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3) (2007) 459–471.

Kennedy, J. Particle swarm optimization. Encyclopedia of Machine Learning, Springer (2010) 760–766

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. Optimization by simulated annealing. Science 220(4598) (1983) 671–680.

Kuo, R. J., Zulvia, F. E. The gradient evolution algorithm: A new metaheuristic. Information Sciences, 316 (2015) 246–265.

Langdon, W. B., Gustafson, S. M. Genetic programming and evolvable machines: ten years of reviews. Genetic Programming and Evolvable Machines Tenth Anniversary Issue: Progress in Genetic Programming and Evolvable Machines, 11(3/4) (2010) 321–338.

Liang, J. J., Qin, A. K., Suganthan, P. N., Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3) (2006) 281–295.

Liang, J. J., Qu, B. Y., Suganthan, P. N. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013.

Downloads

Published

2019-12-24

How to Cite

Hernández Torres, R., Campos Velho, H. F., & P. da Luz, E. F. (2019). Enhancement of the Multi-Particle Collision Algorithm by mechanisms derived from the Opposition-Based Optimization. Selecciones Matemáticas, 6(02), 156-177. https://doi.org/10.17268/sel.mat.2019.02.03