Minimization of a supermodular functions over a relatively complemented finite lattice

Authors

  • Nelson Aragonés Salazar Universidad Nacional de Trujillo

DOI:

https://doi.org/10.17268/sel.mat.2017.02.04

Keywords:

Combinatorial optimization, relatively complemented finite lattice, supermodular function

Abstract

This work presents two discarding principles to solve the problem of the minimization of a supermodular function over a relatively complemented finite lattice. This result generalizes the one presented in [1] for the case of a supermodular function defined in the class of subsets of a given finite set.

References

N. Aragonés S. Minimización de funciones supermodulares, Selecciones Matemáticas, Vol. 02(02): 49-52 (2015).

G. Gratzer Lattice Theory, Dover Publications, Inc, Mineola, New York. (2009).

V. R. Jachatúrov, Métodos matemáticos de programación regional, Nauka, Moscú. (1989).

V. R. Jachatúrov, Métodos Combinatorios y Algoritmos para la solución de problemas de optimización discreta de gran escala, Nauka, Moscú. (2000).

Published

2017-12-15

How to Cite

Salazar, N. A. (2017). Minimization of a supermodular functions over a relatively complemented finite lattice. Selecciones Matemáticas, 4(02), 175-176. https://doi.org/10.17268/sel.mat.2017.02.04