The Cauchy problem for the Korteweg-De Vries equation in Bourgain’s spaces

Authors

  • Cesar Loza Rojas Departamento de Matemática;Facultad de Ciencias;Universidad Nacional San Luis Gonzaga, Av. Los Maestros s/n. Ica-Perú

DOI:

https://doi.org/10.17268/sel.mat.2017.02.03

Keywords:

local existence and uniqueness theorems, integral transforms, applications of PDE in areas other than physics

Abstract

In this paper, we study Cauchy’s problem to the Korteweg-De Vries equation in Hs with s > -3/4 . For this purpose we use the Bourgain spaces, Xs;b; and we get good local formulation to the Cauchy problem.

Author Biography

Cesar Loza Rojas, Departamento de Matemática;Facultad de Ciencias;Universidad Nacional San Luis Gonzaga, Av. Los Maestros s/n. Ica-Perú

Departamento de Matemática;Facultad de Ciencias;Universidad Nacional San Luis Gonzaga, Av. Los Maestros s/n. Ica-Perú

References

J. BONA AND R. SMITH. The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London. Ser.A 278 (1975), 555-601.

J. BOURGAIN. Fourier transformer estriction phenomena for certain lattice subsets and applications to non linear evolution equations. Geom. Funct. Anal. 3 (1993) 107–156, 209–262.

H. BREZIS. Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer-New York. (2010).

T. CAZENAVE AND A. HARAUX. An Introduction to Semilinear Evolution Equation. Oxford Sci. Publ. (1998).

R. J. IORIO AND V. IORIO. Fourier Analysis Partial differential equations. Cambridge University Press, Inc. N.York (2001).

R.J. IORIO JR. AND W.L.V. NUNES. Introducao a Equacoes de Evolucao Nao Lineares. 180 Coloquio Brasileiro de Matematica, IMPA/CNPq, (1991).

T. KATO. Quasi-linear equations of evolution, with applications to partial differential equations. Lecture and Notes in Mathematics, 448 (1975), 25-70.

C. E. KENIG, G. PONCE AND L. VEGA. A bilinear estimate with application to the KdV equation, J. Amer. Math Soc.,9, (1996)573-603.

F. LINARES AND G. PONCE. Introduction to nonlinear dispersive equations.Publicaciones Matem´aticas. Impa.Brasil.(2008).

J. MONTEALEGRE AND S. PETROZZI. Operadores disipativos maximales. Informe de investigaci´on, N2 Serie B, PUCP,(1998).

R. RACKE. Lectures on nonlinear evolution equations. Initial Value Problems, (1982), 88-90.

J. C. SAUT AND R. TEMAN. Remarks on the Korteweg- de Vries equation. Israel J. of Math., 24, (1976), 78-87.

Published

2017-12-15

How to Cite

Rojas, C. L. (2017). The Cauchy problem for the Korteweg-De Vries equation in Bourgain’s spaces. Selecciones Matemáticas, 4(02), 162-174. https://doi.org/10.17268/sel.mat.2017.02.03