Técnicas analíticas empleadas en metabólomica de alimentos

Wilson Saavedra-Charca, Víctor Vásquez-Villalobos, Carmen Rojas-Padilla

Resumen


Las poblaciones de metabolitos de bajo peso molecular en lípidos, aminoácidos, péptidos, ácidos nucleicos, ácidos orgánicos, vitaminas, tioles, carbohidratos, etc. presentes en los alimentos, representan productos finales de procesos regulatorios celulares e indican la respuesta de los sistemas biológicos a una variedad de influencias genéticas y ambientales. Su análisis global es un reto difícil que implica el uso de modernas técnicas analíticas y diferentes estrategias metabolómicas, utilizando para estos propósitos técnicas de alto rendimiento y alta calidad. No siendo posible analizar todos los metabolitos de bajo peso molecular con una sola plataforma analítica. La mayoría de las técnicas analíticas metabolómicas encontradas en análisis de alimentos, seguridad y calidad alimentaria son: Cromatografia de Gases GC (Gas Chromatography), Cromatografía Líquida de Alta Resolución HPLC (High-Performance Liquid Chromatography), Cromatografía Líquida de Ultra Perfomance UPLC (Ultra Performance Liquid Chromatography), Electrofóresis Capilar CE (Capillary Electrophoresis) acoplados a Espectrometría de Masas MS (Mass Spectrometry) y espectroscopia de Resonancia Magnética Nuclear NMR (Nuclear Magnetic Resonance).


Texto completo:

PDF

Referencias


Aharoni, A.; Ric de Vos, C.H.; Verhoeven, H.A.; Maliepaard, C.A.; Kruppa, G.; Bino, R.; Goodenowe, D.B. 2002. Non-targeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6: 217-234.

Alomirah, H.F.; Alli, I; Konishi, Y. 2000. Applications of mass spectrometry to food proteins and peptides. Journal of Chromatography A 893: 1-21.

Agilent Technologies. Innovating HP Way. Basics of LC/MS. 2001. Disponible en: http://ccc.chem.pitt.edu/wipf/Agilent%20LC-MS%20primer.pdf

An, Z.; Chen, Y.; Zhang, R.; Song, Y.; Sun, J.; He, J.; Bai, J.; Dong, L.; Zhan, Q.; Abliz, Z.; 2010. Integrated ionization approach for RRLC-MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J. Proteome Res. 9: 4071-4081.

Barbas, C.; Moraes, E.P. Villaseñor, A. 2011. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J. Pharm. Biomed. Anal. 55: 823-831.

Brennan, L. 2014. NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy 83: 42-49.

Britz-McKibbin, P. 2011. Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS)-based metabolomics. Methods Mol. Biol. 708: 229–246.

Buszewski, B.; Noga, S. 2012. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem. 402(1): 231-247.

Butz, P.; Hofmann, C.; Tauscher, B. 2005. Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. Journal of Food Science 70(9): 131-141.

Cai, J.; Henion, J. 1995. Capillary electrophoresis-mass spectrometry”. Journal of Chromatography A 703: 667-692.

Castillo, S.; Mattila, I.; Miettinen, J.; Orešič, M.; Hyötyläinen, T. 2011. Data analysis tool for comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, Anal. Chem. 83(8): 3058-3067.

Castro-Puyana, M.; Herrero, M. 2013. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends in Analytical Chemistry 52: 74-87.

Cevallos-Cevallos, J.M.; Reyes-De-Corcuera, J.I.; Etxeberria, E.; Danyluka, M.D.; Rodrick, G.E. 2009. Metabolomic analysis in food science: a review. Trends in Food Science & Technology 20: 557-566.

Clayton, P.T. 2001. Applications of mass spectrometry in the study of inborn errors of metabolism. J Inherit Metab Dis 24. 139-150.

Courant, F.; Pinel, G.; Bichon, E.; Monteau, F.; Antignac, J.P.; Le Bizec, B. 2009. Development of a metabolomic approach based on liquid chromatography-high resolution mass spectrometry to screen for clenbuterol abuse in calves. Analyst. 134: 1637-1646.

Cubbon, S.; Antonio, C.; Wilson, J.; Thomas-Oates, J. 2010. Metabolomic applications of HILIC-LC-MS. Mass Spectrom. Rev. 29: 671-684.

Chayaprasert, W.; Stroshine, R. 2005. Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biology and Technology 36(3): 291-301.

Denery, J.R.; Nunes, A.A.; Hixon, M.S.; Dickerson, T.J.; Janda, K.D. 2014. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl Trop Dis. 4(10). pii: e834.

Dunn, W.B.; Broadhurst, D.I.; Deeppak, S.M. 2007. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics 3. (IP).

Dunn, W.B.; Ellis, D.I. 2005. Metabolomics: current analytical platforms and methodologies: TrAC. Trends Analyt. Chem. 24(4): 285-294.

Elliott, R.; Ong, T.J. 2002. Nutritional genomics. BMJ 324: 1438-1442.

Ellis D.I.; Broadhurst, D.; Kell, D.B.; Rowland, J.J.; Goodacre, R.; 2002. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl. Environ. Microbiol. 68(6): 2822-2828.

Ellis, D.I.; Broadhurts, D.; Clarke, S.J.; Goodacre, R. 2005. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst 130(12): 1648-1654.

Fiehn, O.; Kloska, S.; Altmannn, T. 2001. Integrated studies on plant biology using multiparallel techniques. Curr Opin Biotechnol 12: 82-86.

Fiehn, O. 2002. Metabolomics- the link between genotypes and phenotypes. Plant Mol Biol 48: 155-171.

German J.B.; Roberts, M.A.; Watkins, S.M. 2003 (a). Genomics and metabolomics as markers for the interaction of diet and health: lessons from lipids. J Nutr 133: 2078-2083.

Glassbrook, N.; Ryals, J. 2001. A systemic approach to biochemical profiling. Curr Opin Plant Biol 4: 186-190.

Go, V.L.; Butrum, R.R.; Wong, D.A. 2003. Diet, nutrition and cancer prevention: the postgenomic era. J Nutr 133: 3830-3836.

Griffin, J.L. 2004. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterization of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol 7: 648-654.

Han, X.; Gross, R.W. 2003. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44: 1071-1079.

Han, J.; Danell, R.M.; Patel, J.R.; Gumerov, D.R.; Scarlett, C.O.; Speir, J.P.; Parker, C.E.; Rusyn, I.; Zeisel, S.; Borchers, C.H. 2008. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4(2): 128-140.

Hernández, J. 2005. Nuevas metodologías de análisis de pesticidas por electroforesis capilar. Tesis Doctoral. Servicio de publicaciones Universidad de la Laguna. Pp. 244.

Hewlett-Packard Company, 1998. Basics of LC/MS. Disponible en: http://www.chem.agilent.com/library/support/documents/a05296.pdf

Hiller, K.; Metallo, C.M.; Kelleher, J.K.; Stephanopoulos, G. 2010. Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal. Chem. 82(15): 6621-6628.

Idborg-Bjorkman, H.; Edlund, P.O.; Kvalheim, O.M.; Schuppe-Koistinen, I.; Jacobsson, S.P. 2003. Screening of biomarkers in rat urine using LC/electrospray ionisation-MS and two-way data analysis. Anal Chem 75: 4784-4792.

Junot, C.; Madalinski, G.; Tabet, J.C.; Ezan, E. 2010. Analyst 135: 2203-2219.

Kell, D.B. 2004. Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7: 296-307.

Kumar, T.S.; Balammal, G.; Kumar, A.S. 2012. Ultra performance liquid chromatography: an introduction and review. International Journal of Pharmaceutical. Research & Analysis. 2(1): 24-31.

Lee do, Y.; Bowen, B.P.; Northen, T.R. 2010. Mass spectrometry–based metabolomics, analysis of metabolite-protein interactions, and imaging. BioTechniques 49(2): 557-565.

Létal, J.; Jirák, D.; Šuderlová, L.; Hájek, M. 2003. MRI ‘texture’ analysis of MR images of apples during ripening and storage. LWT-Food Science and Technology 36(7): 719-727.

Lin, Y.Q..; Schiavo, S.; Orjala, J.; Vouros, P.; Kautz, R. 2008. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal. Chem. 80: 8045-8054.

Loo, J.A.; Udseth, H.R.; Smith R.D. 1989. Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal. Biochem. 179(2): 404-12.

Mannina, L.; Segre, A. 2002. High resolution nuclear magnetic resonance: From chemical structure to food authenticity. Grasas y Aceites 53(1): 22-33.

McMaster, M.; McMaster, C. 1998. GC/MS. A practical user’s guide. United America, Wiley-VCH.

Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. 2013. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Research International 5: 729-747.

Mariette, F. 2009. Investigations of food colloids by NMR and MRI. Current Opinion in Colloid & Interface Science 14(3): 203-211.

Maxwell, E.J.; Chen, D:D. 2008. Twenty years of interface development for capillary electrophoresis-electrospray ionization-mass spectrometry. Anal. Chim. Acta 627 (1): 25-33.

Mendes, P. 2002. Emerging bioinformatics for the metabolome. Brief Bioinform 3: 134-145.

Milner, J.A. 2003. Incorporating basic nutrition science into health interventions for cancer prevention. J Nutr 133: 3820-3826.

Mohler, R.E.; Dombek, K.M.; Hoggard, J.C.; Pierce, K.M.; Young, E.T.; Synovec, R.E. 2007. Analyst 132: 756-767.

Monaci, L.; Visconti, A. 2009. Mass spectrometry-based proteomics methods for analysis of food allergens. Trends in Analytical Chemistry 28(5): 581-591.

Narváez-Cuenca, C.E.; Vincken J.P.; Gruppen, H. 2011. Identification and quantification of (dihydro) hidroxycinnamic acids and their conjugates in potato by UHPLC-DAD-ESI-MSn. Food Chemistry 130: 730-738.

Nicholson, J.K.; Lindon, J.C.; Holmes, E. 1999. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181-1189.

Nicholson, J.K.; Connelly, J., Lindon J.C.; Holmes, E. 2002. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1 153-161.

Novoa-Carballal, R.; Fernandez-Megia, E.; Jimenez, C.; Riguera, R. 2011. NMR methods for unravelling the spectra of complex mixtures. Natural Product Reports 28(1): 78-98.

Ochoa, L.M. 2011. Implementacion de una metodologia GC- ECD y GC-MS para la cuantificacion y determinacion de acrilamida en alimentos procesados a altas temperaturas. Tesis Química. Universidad Industrial de Santander, Bucaramanga. Pp. 71.

Ogrinc, N.; Kosir, I. J.; Spangenberg, J. E.; Kidric, J. 2003. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Analytical and Bioanalytical Chemistry 376(4): 424-430.

Ordovas, J.M.; Mooser, V. 2004. Nutrigenomics and nutrigenetics. Curr Opin Lipidol 15: 101-108.

Oztop, M.H.; Rosenberg, M.; Rosenberg, Y.; McCarthy, K.L.; McCarthy, M.J. 2010.

Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels. Journal of Food Science 75(8): 508-515.

Palencia, R. 2002. Enfermedades peroxisomales. Estado actual. Bol Pediatr, Asturias, Cantabria, Castilla y León. España; 42: 217-229.

Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. 2011. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes-A review. Meat Science 89(2): 111-124.

Pham-Tuan, H.; Kashavelis, L.; Daykin, C.A.; Janssen, H.G. 2003. Method development in high-performance liquid chromatography for high throughput profiling and metabonomic studies of biofluid samples. J Chromatogr 789B: 283-301.

Plumb, R.S.; Stumpf, C.L.; Gorenstein, M.V.; Castro-Perez, J.M.; Dear, G.J.; Anthony, M.; Sweatman, B.C.; Connor, S.C.; Haselden, J.N. 2002. Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom 16: 1991-1996.

Plumb, R.S.; Stumpf, C.L.; Granger, J.H.; Castro-Perez, J.; Haselden, J.N.; Dear, G.J. 2003. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun Mass Spectrom 17: 2632–2638.

Ramautar, R.; Heemskerk, A.A.M.; Hensbergen, P.J.; Deelder, A.M.; Busnel, J.-M.; Mayborod, O.A. 2012. CE–MS for proteomics: Advances in interface development and application. Journal of Proteomics 75: 3814- 3828.

Rashed, M.S. 2001. Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. J Chromatogr 758B: 27-48.

Reo, N.V. 2002. NMR-based metabolomics. Drug Chem Toxicol 25: 375-382.

Romero, R.; Fernández, J.; Plaza, P.; Garrido, A.; Martínez, J. 2007. Empleo de la espectrometría de masas como herramienta para la determinación de tóxicos en alimentos: hacia la seguridad alimentaria. Rev Esp Salud Pública 81: 461-474.

Rodríguez-Perez, C.; Quirantes-Piné, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. 2013. Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectometry. Food Research International 54(2): 1519-1527.

Seeley, J.V. 2012. Multidimensional and Comprehensive Gas Chromatography. Elsevier Inc. 7: 161-184.

Solanky, K.S.; Bailey, N.J.; Beckwith-Hall, B.M.; Davis, A.; Bingham, S.; Holmes, E.; Nicholson, J.K.; Cassidy, A. 2003. Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323: 197-204.

Soriano, R.A.; Pastore, G.M. 2012. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Research International 46: 378-386.

Spagou, K.; Wilson, I.D.; Masson, P.; Theodoridis, G.; Raikos, N.; Coen, M.; Holmes, E.; Lindon, J.C.; Plumb, R.S.; Nicholson, J.K.; Want, E.J. 2011. HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal. Chem. 83(1): 382-390.

Stuart, B. 1997. Biological Applications of Infrared Spectroscopy. Jhon Wiley & Sons. Chichester, UK.

Su, X.; Han, X.; Yang, J.; Mancuso, D.J.; Chen, J.; Bickel, P.E.; Gross, R.W. 2004. Sequential ordered fatty acid a oxidation and D9 desaturation are major determinants of lipid storage and utilization in differentiating adipocytes. Biochemistry 43: 5033-5044.

Sundekilde, U.K.; Larsen, L.B.; Bertram, H.C. 2013. NMR-Based Milk Metabolomics. Metabolites 3: 204-222.

Tarachiwin, L.; Ute, K.; Kobayashi, A.; Fukusaki. 2007. 1H NMR based metabolic profiling in the evaluation of Japanese green tea quality. J Agric Food Chem. 55(23): 9330-9336.

Teague, C.; Holmes, E.; Maibaum, E.; Nicholson, J.; Tang, H.; Chan, Q.; Elliott, P.; Wilson, I. 2004. Ethyl glucoside in human urine following dietary exposure: detection by 1H NMR spectroscopy as a result of metabonomic screening in humans. Analyst 129: 259-264.

Thybo, A.K.; Szczypinski, P.M.; Karlsson, A.H.; Dønstrup, S.; Stødkilde-Jørgensen, H.S.; Andersen, H.J. 2004. Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. Journal of Food Engineering 61: 91-100.

Tomassini, A.; Capuani, G.; Delfini, M.; Miccheli, A. 2013. NMR-Based Metabolomics in Food Quality Control. Data Handling in Science and Technology. 28: 411-447.

Tsugawa, H.; Bamba, T.; Shinohara, M.; Nishiumi, S.; Yoshida, M.; Fukusaki, E. 2011. J. Biosci. Bioeng. 112: 292-298.

Underwood, B.R.; Broadhurst D.; Dunn W.B.; 2006. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129: 877-886.

Valdés, A.; Simó, C.; Ibáñez, C.; García-Cañas, V. 2013. Foodomics strategies for the analysis of transgenic foods. Trends in Analytical Chemistry 52: 2-15.

Van Ommen, B. 2004. Nutrigenomics: exploiting systems biology in the nutrition and health area. Nutrition 20: 4-8.

Van Kampen, J.J.; Burgers, P.C.; de Groot, R.; Gruters, R.A.; Luider, T.M. 2011. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom. Rev. 30(1): 101-120.

Vilen, E.M.; Lundqvist, L.C.; Jouanneau, D.; Helbert, W.; Sandstrom, C. 2010. NMR study on hydroxy protons of kappa- and kappa/mu-hybrid carrageenan oligosaccharides: Experimental evidence of hydrogen bonding and chemical exchange interactions in kappa/mu oligosaccharides. Biomacromolecules 11(12): 3487-3494.

Walsh M.J.; Singh, M.N.; Pollock H.M. 2007. ATR microspectroscopy with multivariate analysys segregates grades of exfoliative cervical cytology. Biochm. Biophys. Res, Commun 352(1): 213-219.

Wang, H.-Y, Chu, X.; Zhao, Z.-X.; He, X.-S.; Guo, Y.-L. 2011. Analysis of low molecular weight compounds by MALDI-FTICR-MS. Journal of Chromatography B 879: 1166-1179.

Wang, X.; Wang, S.; Cai, Z. 2013. The latest developments and applications of mass spectrometry in food-safety and quality analysis. Trends in Analytical Chemistry 52: 170-185.

Watkins, S.M.; Hammock, B.D.; Newman, J.W.; German J.B. 2001. Individual metabolism should guide agriculture towards foods for improved health and nutrition. Am J Clin Nutr 74: 283-286.

Watkins, S.M.; German, J.B. 2002. Toward the implantation of metabolomic assessments of human health and nutrition. Curr Opin Biotechnol 13: 512-516.

Watkins, S.M.; Reifsnyder, P.R.; Pan, H.J.; German, J.B.; Leiter; E.H. 2002. Lipid metabolome-wide effects of the PPARg agonist rosiglitazone. J Lipid Res 43: 1809-1817.

Weckwerth, W. 2003. Metabolomics in systems biology. Annu Rev Plant Biol 54: 669-689.

Weckwerth, W.; Fiehn, O. 2002. Can we discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 13: 156-160.

Werner, E.; Heilier, J.F.; Ducruix, C.; Ezan, E.; Junot, C.; Tabet, J.C. 2008. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 871: 143-163.

Weston, D.J. 2010. Ambient ionization mass spectrometry: Current understanding of mechanistic theory; Analytical performance and application areas. Analyst 135: 661-668.

Whitfield, P.D.; German, A.J.; Noble, P.J.N. 2004. Horizons in Nutritional Science. Metabolomics: an emerging post-genomic tool for nutrition. British Journal of Nutrition 92: 549-555.

Winder, C.L.; Gordon S.V.; Dale, J.; Hewinson R.G.; Goodacre, R. 2006. Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: implications for genotype-phenotype links. Microbiology 152: 2758-2765.

Winning, H.; Roldán-Marín, E.; Dragsted, L.O.; Viereck, N.; Poulsen, M.; Sánchez-Moreno, C.; Cano, M.P.; Engelsen, S.B. 2009. An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake. Analyst 134: 2344–2351.

Wu, J.; An, Y.; Yao, J.; Wang, Y.; Tang, H. 2010. An optimised sample preparation method for NMR-based faecal metabonomic analysis. Analyst 135: 1023–1030.

Wu, Z.; Li, M.; Zhao, C.; Zhou, J.; Chang, Y.; Li, X.; Gao, P.; Lu, X.; Li, Y.; Xu, G. 2010. Urinary metabonomics study in a rat model in response to protein-energy malnutrition by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Mol. Biosyst. 6: 2157–2163.

Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. 2012. Modern analytical techniques in metabolomics analysis. Analyst www.rsc.org/analyst: 137: 293-300.




DOI: http://dx.doi.org/10.17268/agroind.science.2015.02.11

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

  

 

      
  

 

 

 

 

 

   

 

Licencia de Creative Commons

Agroindustrial Science by Universidad Nacional de Trujillo is licensed under a Creative Commons Reconocimiento-NoComercial 3.0 Unported License.

ISSN: 2226-2989 (electrónico); DOI: 10.17268/agroind.sci

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contacto: agroind.science@unitru.edu.pe