Avances tecnológicos en la obtención, identificación y producción de hidrolizados proteicos de residuos de pescado por acción enzimática: propiedades bioactivas y tecnofuncionales, aplicación en alimentos, mercado y regulación

Autores/as

  • Deyvis Espinoza Universidad Nacional del Santa, Perú
  • Augusto Castillo Universidad Nacional del Santa, Perú

DOI:

https://doi.org/10.17268/sci.agropecu.2022.012

Palabras clave:

residuos de pescado, hidrólisis enzimática, péptidos bioactivos, producción de alimentos, nutracéutico

Resumen

En la actualidad, se han desarrollado numerosas metodologías para obtener el máximo aprovechamiento de proteínas del pescado, con la finalidad de satisfacer la demanda nutricional humana, este aprovechamiento se ha realizado tanto, a partir de pescado entero como de sus residuos o subproductos (hígado, cabeza, piel, gónadas, esqueleto y vísceras) los que representan hasta el 60% del pescado entero. Potencialmente el pescado entero y los subproductos pueden utilizarse como fuentes de aminoácidos esenciales, colágeno, gelatina, lípidos poliinsaturados y enzimas. Mediante el uso de la tecnología enzimática se han obtenido hidrolizados proteicos con amplio potencial para su aplicación como ingredientes en el desarrollo y producción de alimentos fortificados, debido a sus propiedades funcionales (antihipertensivos, antioxidantes, antimicrobianos e inmunomoduladores) los que pueden reducir los riesgos de cáncer, envejecimiento, diabetes y enfermedades cardiovasculares. Además, estos hidrolizados presentan importantes propiedades tecno-funcionales (formación de espuma, solubilidad, emulsificación, gelificación, retención de agua y aceite) que proveen características tecnológicas deseables para el procesamiento, almacenamiento y calidad del producto, así como para el comportamiento durante el procesamiento y almacenamiento. Esta revisión analiza los avances en la tecnología de obtención, identificación y producción de hidrolizados proteicos de pescado (FPH) por acción enzimática, con énfasis en residuos de pescado destacando la aplicación de los FPH en alimentos, el análisis de mercado y las regulaciones globales. Se recomienda continuar los estudios de optimización de producción enzimática de FPH a fin de lograr mejorar el sabor y su aplicación en la fortificación de alimentos de consumo masivo.

Citas

Abejón, R., Belleville, M. P., Sanchez-Marcano, J., Garea, A., & Irabien, A. (2018). Optimal design of industrial scale continuous process for fractionation by membrane technologies of protein hydrolysate derived from fish wastes. Separation and Purification Technology, 197, 137–146.

Abdul-Hamid, A., Bakar, J., & Bee, G. H. (2002). Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chemistry, 78(1), 69–74.

Acar, H. Ting, J. M. Srivastava, S. LaBelle, J. L., & Tirrell, M. V. (2017). Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev, 46, 6553–6569.

Ahn, C. B., Cho, Y. S., & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151–156.

Ahuja, I., Dauksas, E., Remme, J. F., Richardsen, R., & Løes, A. K. (2020). Fish and fish waste-based fertilizers in organic farming - With status in Norway: A review. Waste management (New York, N.Y.), 115, 95–112.

Anandhakumar, S., Krishnamoorthy, G., Ramkumar, K.M., & Raichur, A.M. (2017). Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C., 70, 378–385.

Bertelsen, A. S., Laursen, A., Knudsen, T. A., Møller, S., & Kidmose, U. (2018). Bitter taste masking of enzyme-treated soy protein in water and bread. Journal of the Science of Food and Agriculture, 98(10), 3860–3869.

Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., & Kumar, V. (2020). A review on bioactive peptides: Physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics, 26(1), 139–150.

Chalamaiah, M., & Wu, J. (2017). Anti-inflammatory capacity of hen egg yolk livetins fraction (α, β & γ livetins) and its enzymatic hydrolysates in lipo-polysaccharide (LPS) induced RAW 264.7 macrophages. Food Research International, 100, 449–459.

Chalamaiah, M., Yu, W., & Wu, J. (2018). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry, 245, 205–222.

Chalamaiah, M., Keskin Ulug, S., Hong, H., & Wu, J. (2019). Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58, 123–129.

Cheung, I. W. Y., & Li-Chan, E. C. Y. (2017). Enzymatic production of protein hydrolysates from steelhead (Oncorhynchus mykiss) skin gelatin as inhibitors of dipeptidyl-peptidase IV and angiotensin-I converting enzyme. Journal of Functional Foods, 28, 254–264.

Chi, C., Wang, B., Hu, F., Wang, Y., Zhang, B., Deng, S. (2015). Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International, 73, 124–129.

Cian, R.E., Campos-Soldini, A., Chel-Guerrero, L., Drago, S.R., & Betancur-Ancona, D. (2019). Bioactive Phaseolus lunatus peptides release from maltodextrin/gum arabic microcapsules obtained by spray drying after simulated gastrointestinal digestion. Int. J. Food Sci. Technol. 54, 2002–2009.

Coppola, D.; Lauritano, C.; Palma Espósito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. (2021) Desechos de pescado: de un problema a un recurso valioso. MDPI- Drogas marinas, 19, 116.

Dauksas, E., Slizyte, R., Rustad, T., & Storro, I. (2004). Bitterness in fish protein hydrolysates and methods for removal. Journal of Aquatic Food Product Technology, 13(2), 101–114.

Erol, N. D., Erdem, Ö. A. & Çakli, Ş. (2017). Stability of fish protein hydrolysate from heads of gilthead sea bream (Sparus aurata), european sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhyncus mykiss) during storage. Su Ürünleri Derg, 34, 327–336.

Egerton, S., Culloty, S., Whooley, J., Stanton, C., & Ross, P.R. (2018) Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem, 245, 698–706.

Fritsche, R. (2003). Role for technology in dairy allergy. Australian Journal of Dairy Technology, 58, 89–91.

Fu, Y., Liu, J., Hansen, E. T., Bredie, W. L. P., & Lametsch, R. (2018). Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chemistry, 257, 163–171.

Gao, R., Shen, Y., Shu, W., Bai, F., Jin, W., et al. (2020). Optimization of Enzymatic Conditions of Sturgeon Muscles and Their Anti-Inflammatory Potential. Journal of Food Quality, 2020, 1–12.

Gao, R., Yu, Q., Shen, Y., Chu, Q., Chen, G., et al. (2021). Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology, 110, 687–699.

Gevaert B., Veryser L., Verbeke, F., Wynendaele, E., De Spiegeleer, B. (2016). Fish Hydrolysates: A Regulatory Perspective of Bioactive Peptides. Protein Pept Lett., 23(12), 1052-1060.

Giannetto, A., Esposito, E., Lanza, M., Oliva, S., Riolo, K., et al. (2020). Protein Hydrolysates from Anchovy (Engraulis encrasicolus) Waste: In Vitro and In Vivo Biological Activities. Marine drugs, 18(2), 86.

Gildberg, A. (1993). Enzymic processing of marine raw materials. Process Biochemistry, 28, 1–15.

Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol, 51, 24–33.

Hassan, M. A., Deepitha, R. P., Xavier, K. A. M., Gupta, S., Nayak, B. B., & Balange, A. K. (2018). Evaluation of the Properties of Spray Dried Visceral Protein Hydrolysate from Pangasianodon hypophthalmus (Sauvage, 1978) Extracted by Enzymatic and Chemical Methods. Waste and Biomass Valorization, 9, 2547-2558.

Harnedy, P. A., Parthsarathy, V., McLaughlin, C. M., O’Keeffe, M. B., Allsopp, P. J., et al. (2018). Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of anti-diabetic peptides. Food Research International, 106, 598–606.

He, Y., Pan, X., Chi, C.-F., Sun, K.-L., & Wang, B. (2019). Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: Preparation, identification, and antioxidant activity evaluation. LWT, 105, 1–8.

Heffernan, S., Giblin, L., & O'Brien, N. (2021). Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food chemistry, 359, 129852.

Hemker, A. K., Nguyen, L. T., Karwe, M., & Salvi, D. (2020). Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. LWT, 122, 109003.

Hong, H., Chaplot, S., Chalamaiah, M., Roy, B. C., Bruce, H. L., & Wu, J. (2017). Removing cross-linked telopeptides enhances the production of low-molecularweight collagen peptides from spent hens. Journal of Agricultural and Food Chemistry, 65(34), 7491–7499.

Hong, H., Roy, B. C., Chalamaiah, M., Bruce, H. L., & Wu, J. (2018). Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chemistry, 258, 174–180.

Hong, H., Fan, H., Chalamaiah, M. y Wu, J. (2019). Preparación de hidrolizados de colágeno (péptidos) de bajo peso molecular: progreso actual, desafíos y perspectivas futuras. Química alimentaria, 125222.

Hou, H., Fan, Y., Wang, S., Si, L., & Li, B. (2016). Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor – Artificial neural network and the identification of its active central fragment. Journal of Functional Foods, 24, 37–47.

Hsu, K.-C. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122(1), 42–48.

Ibarra, P., Teixeira, A., Simpson, R., Valencia, P., Pinto, M., & Almonacid, S. (2013). Addition of fish protein hydrolysate for enhanced water retention in sous vide processing of Salmon. Journal of Food Processing & Technology, 4, 241.

INDECOPI. (2010). Ley 29571 - Código de protección y defensa del consumidor. https://www.gob.pe/institucion/indecopi/normas-legales/1244218-29571

Idowu, A. T., Benjakul, S., Sinthusamran, S., Pongsetkul, J., Sae-Leaw, T., & Sookchoo, P. (2019a). Whole wheat cracker fortified with biocalcium and protein hydrolysate powders from salmon frame: characteristics and nutritional value. Food Qual Saf, 3(3),191–199.

Idowu, A. T., Benjakul, S., Sinthusamran, S., Sookchoo, P., & Kishimura, H. (2019b). Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J Food Biochem, 43(2), e12734.

Ishibashi, N., Kubo, T., Chino, M., Fukui, H., Shinoda, I., Kikuchi, F., & Fukui, S. (1988). Studies on flavored peptides. Taste of proline-containing peptides. Agricultural and Biological Chemistry, 52, 95-98.

Je, J.-Y., Park, P.-J., & Kim, S.-K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38(1), 45–50.

Jemil, I. O., Abdelhedi, L., Mora, R., Nasri, M. C., Aristoy, M., et al. (2016). Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochem 51, 2186-2197.

Jeon, Y.-J., Byun, H.-G., & Kim, S.-K. (1999). Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry, 35(5), 471–478.

Klomklao, S., & Benjakul, S. (2016). Utilization of Tuna Processing Byproducts: Protein Hydrolysate from Skipjack Tuna (Katsuwonus pelamis) Viscera. Journal of Food Processing and Preservation, 41(3), e12970.

Korkmaz, K., & Tokur, B. (2021). Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology. Food Bioscience, 101312.

Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40, 43–81.

Lambrecht, M. A., Rombouts, I., De Ketelaere, B., & Delcour, J. A. (2017). Prediction of heat-induced polymerization of different globular food proteins in mixtures with wheat gluten. Food Chemistry, 221, 1158–1167.

Lee, E. J., Hur, J., Ham, S. A., Jo, Y., Lee, S., et al. (2017). Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. International Journal of Biological Macromolecules, 104(Pt A), 281–286.

Leni, G., Soetemans, L., Caligiani, A., Sforza, S., & Bastiaens, L. (2020). Degree of hydrolysis affects the techno-functional properties of lesser mealworm protein hydrolysates. Foods, 9(4), 381.

Lima, K. O., da Costa de Quadros, C., Rocha, M.d., Jocelino Gomes de Lacerda, J. T., Juliano, M. A., et al. (2019). Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). LWT, 111, 408–413.

Lu, J., Hou, H., Fan, Y., Yang, T., & Li, B. (2017). Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway. Journal of Functional Foods, 33, 251–260.

Luna-Vital, D. A., Mojica, L., González de Mejía, E., Mendoza, S., & Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Research International, 76(P1), 39-50.

Mangano, V., Gervasi, T., Rotondo, A., De Pasquale, P., Dugo, G., Macrì, F., & Salvo, A. (2019). Protein hydrolysates from anchovy waste: purification and chemical characterization. Natural Product Research, 35(3), 399–406.

Market Analysis Report. (2020). Fish protein hydrolysate market size, share & trends analysis report by technology (autolytic, acid hydrolysis), By Form (Powder, Liquid), By Source (Sardines, Anchovies), by Application, By Region, And Segment Forecasts, 2020 – 2027. https://www.grandviewresearch.com/industry-analysis/protein-supplements-market.

Mennella, C., Visciano, M., Napolitano, A., Del Castillo, M. D., & Fogliano, V. (2006). Glycation of lysine-containing dipeptides. Journal of Peptide Science, 12, 291–296.

MINSA (Ministerio de Salud). (1998). Decreto Supremo N° 007-98-SA. Reglamento sobre Vigilancia y Control Sanitario de Alimentos y Bebidas. https://www.gob.pe/institucion/minsa/normas-legales/256394-007-98-sa

Microlab Scientific. (2018). Membranes. Disponible en: http://www.microlabscientific.com/Membrane-Filter.html.

Moreira, T., Pessoa, L., Seixas, F., Ineu, R. P., Gonçalves, O. H., et al. (2022). Chemometric evaluation of enzymatic hydrolysis in the production of fish protein hydrolysates with acetylcholinesterase inhibitory activity. Food chemistry, 367, 130728.

Muzaddadi, A. U., Devatkal, S., & Oberoi, H. S. (2016). Seafood Enzymes and Their Application in Food Processing. Agro-Industrial Wastes as Feedstock for Enzyme Production, 2016, 201–232.

Nasir, S. N. A. M., & Sarbon, N. M. (2019). Angiotensin converting enzyme (ACE), antioxidant activity and functional properties of shortfin scad (Decapterus macrosoma) muscle protein hydrolysate at different molecular weight variations. Biocatalysis and Agricultural Biotechnology, 20, 101254.

Nesse, K. O., Nagalakshmi, A., Marimuthu, P., Singh, M., Bhetariya, P. J., et al. (2014). Safety evaluation of fish protein hydrolysate supplementation in malnourished children. Regulatory Toxicology and Pharmacology, 69(1), 1–6.

Neves, A. C., Harnedy, P. A., O'Keeffe, M. B., Alashi, M. A., Aluko, R. E., & FitzGerald, R. J. (2017). Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Research International, 100, 112–120.

Newman, J., Egan, T., Harbourne, N., O ׳Riordan, D., Jacquier, J. C., & O ׳Sullivan, M. (2014). Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data. Talanta, 126, 46–53.

Ngo, D. -H., Kang, K. -H., Ryu, B., Vo, T. -S., Jung, W. -K., et al. (2015). Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chem, 174, 37–43.

NTP 209.652:2017. (2017). Alimentos Envasados. Etiquetado de nutricional. 3ra Edición. https://salalecturavirtual.inacal.gob.pe:8098/datos.aspx?id=23899

NTP 209.038:2019. (2019). Alimentos Envasados. Etiquetado de alimentos preenvasados. 8va Edición. https://salalecturavirtual.inacal.gob.pe:8098/datos.aspx?id=31714

NTP 209.036. 1974 (Revisada 2017). (2017). Caldos concentrados. Generalidades. 1ra Edición. https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=24123&idtv=5848

NTS N°071 MINSA/DIGESA V.01. (2008). Criterios microbiológicos de calidad sanitaria e inocuidad para alimentos y bebidas de consumo humano. https://www.gob.pe/institucion/minsa/normas-legales/247682-591-2008-minsa

Nurilmala, M., Nurhayati, T., & Roskananda, R. (2018). Limbah industri filet ikan patin untuk hidrolisat protein. Journal Pengolahan Hasil Perikanan Indonesia, 21(2), 287–294.

O’Brien, P. (2015). Regulation of functional foods in China: A framework in flux. Regulatory Rapporteur, 12 No 7/8.

OECD/FAO (2016), OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris. https://doi.org/10.1787/agr_outlook-2016-en

Ono, M., & Ono, A. (2015). Impacts of the FoSHU (Food for Specified Health Uses) system on food evaluations in Japan. Journal of Consumer Policy, 32, 542–550.

Ozyurt, C. E., Boga, E. K., Ozkutuk, A. S., Ucar, Y., Durmus, M., & Ozyurt, G. (2020). Bioconversion of discard fish (Equulites klunzingeri and Carassius gibelio) fermented with natural lactic acid bacteria, the chemical and microbiological quality of ensilage. Waste and Biomass Valorization, 11(4), 1435–1442.

Pasupuleti, V. K., & Braun, S. (2010). State of the art manufacturing of protein hydrolysates. In: Pasupuleti, V. K., Demain, A. L. (eds) Protein hydrolysates in biotechnology. Springer, Dordrecht, pp 11–32.

Petrova, I., Tolstorebrov, I., & Eikevik, T. M. (2018). Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing. International Aquatic Research, 10(3), 223–241.

Prihanto, A.A., Nurdiani, R., & Bagus, A.D. (2019). Production and characteristics of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. PeerJ, 7, e8297.

Rao, P. S., Bajaj, R. K., Mann, B., Arora, S., & Tomar, S. K. (2016). Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend. J. Food Sci. Technol, 53, 3834-3843.

Raut, M. K., & Sahu, A. B. (2018). Projection of population of stunted children under five years and anaemic women of reproductive age in thirteen low, upper and high income 100 million+ countries around the world up to 2050. Int J Community Med Public Health, 5(7), 2878.

Raveschot, C., Cudennec, B., Coutte, F., Flahaut, C., Fremont, M., et al. (2018). Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Frontiers in Microbiology, 9, 2354.

Regulation (EC) No. 1924/2006. (2006). The European Parliament and of the council of 20 december 2006 on nutrition and health claims made on foods. Official Journal of the European Union, L404/9-L404/25.

Rivero-Pino, F., Javier Espejo-Carpio, F., & Guadix, E. M. (2020). Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates. Food Research International, 137, 109572.

Roslan, J., Mustapa-Kamal, S. M., Yunos, K. F., & Abdullah. N. (2018). Evaluation on performance of dead-end ultrafiltration membrane in fractionating tilapia by-product protein hydrolysate. Sep Purif Technol, 195, 21–29.

Ruthu, Murthy, P. S., Rai, A. K., & Bhaskar, N. (2014). Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. Journal of food science and technology, 51(9), 1884–1892.

Sampath, N. S., Nazeer, R. A. & Jaiganesh, R. (2011). Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32(7), 1496-1501.

Schägger, H. (2006). Tricine–SDS-PAGE. Nature Protocols, 1(1), 16–22.

Shen, Q., Guo, R., Dai, Z., & Zhang, Y. (2012). Investigation of enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle (Collichthys niveatus) and evaluation of its functional properties. Journal of Agricultural and Food Chemistry, 60(20), 5192–5198.

Shimizu, T. (2002). Newly established regulation in Japan: Foods with health claims. Asia Pacific Journal of Clinical Nutrition, 11, S94–S96.

Siddik, M. A. B., Howieson, J., Fotedar, R., & Partridge, G. J. (2020). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430.

Sifuentes, G., León, S., & Castillo, A. (2018). Hidrólisis de las proteínas de anchoveta (Engraulis ringens) entera por acción de la enzima Protamex. Scientia Agropecuaria 9(1), 93-102.

Silva, J. F. X., Ribeiro, K., Silva, J. F., Cahú, T. B., & Bezerra, R. S. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology, 196, 96106.

Singh, A. & Benjakul, S. (2018). Proteolysis and Its Control Using Protease Inhibitors in Fish and Fish Products: A Review. Compr. Rev. Food Sci. Food Saf, 17, 496–509.

Sinthusamran, S., Idowu, A. T., Benjakul, S., Prodpran, T., Yesilsu, A. F., & Kishimura, H. (2019a). Effect of proteases and alcohols used for debittering on characteristics and antioxidative activity of protein hydrolysate from salmon frames. J Food Sci Technol, 57, 473–483.

Sinthusamran, S., Benjakul, S., Kijroongrojana, K., & Prodpran, T. (2019b). Chemical, physical, rheological and sensory properties of biscuit fortified with protein hydrolysate from cephalothorax of Pacific white shrimp. J Food Sci Technol, 56(3), 1145–1154.

Su, G., Ren, J., Yang, B., Cui, C., & Zhao, M. (2011). Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases. Food Chemistry, 126(3), 1306–1311.

Suwal, S., Ketnawa, S., Liceaga. A. M., & Huang, J. -Y. (2018). Electro-membrane fractionation of antioxidant peptides from protein hydrolysates of rainbow trout (Oncorhynchus mykiss) byproducts. Innov Food Sci Emerg, 45, 122–131.

Udenigwe, C. C., & Fogliano, V. (2017). Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? Journal of Functional Foods, 35, 9–12.

Van Lancker, F., Adams, A., & De Kimpe, N. (2011). Chemical modifications of peptides and their impact on food properties. Chemical Reviews, 111, 7876–7903.

Wang, Y., & Selomulya, C. (2019). Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Advanced Powder Technology, 31(1), 409-415.

Ye, Q., Woo, M. W., & Selomulya, C. (2019). Modification of molecular conformation of spray-dried whey protein microparticles improving digestibility and release characteristics. Food Chem, 280, 255–261.

Vázquez, J. A., Rodríguez-Amado, I., Sotelo, C. G., Sanz, N., Pérez-Martín, R. I., & Valcárcel, J. (2020). Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture turbot (Scophthalmus maximus) Wastes. Biomolecules, 10(2), 310.

Vieira, E. F., Pinho, O., & Ferreira, I. M. (2017). Bio-functional properties of sardine protein hydrolysates obtained by brewer’s spent yeast and commercial proteases. Journal of the Science of Food and Agriculture, 97(15), 5414–5422.

Wang, L., Sun, J., Ding, S., & Qi, B. (2018a). Isolation and identification of novel antioxidant and antimicrobial oligopeptides from enzymatically hydrolyzed anchovy fish meal. Process Biochemistry, 74, 148-155.

Wang, L., Jiang, Y., Wang, X., Zhou, J., Cui, H., et al. (2018b). Effect of oral administration of collagen hydrolysates from Nile tilapia on the chronologically aged skin. Journal of Functional Foods, 44, 112–117.

Wang, Y., & Selomulya, C. (2020). Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Advanced Powder Technology, 31(1), 409-415.

Wangkheirakpam, R., Mahanand, S. S., Majumdar, R. K., Sharma, S., Hidangmayum, D. D. & Netam, S. (2019). Fish waste utilization with reference to fish protein hydrolysate - a review. Fishery Technology, 56, 169-178.

Wen, P., Zong, M. -H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science & Technology, 70, 56–68.

Wong, F. -C., Xiao, J., Ong, M. G. L., Pang, M. -J., Wong, S. -J., Teh, L. -K., & Chai, T. -T. (2019). Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chemistry, 271, 614–622.

Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., et al. (2018). Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease. Food Chemistry, 248, 346–352.

Xing, R. E., Yang, H. Y., Wang, X. Q., Yu, H. H., Liu, S., et al. (2018). Effect of enzymatically hydrolyzed scallop visceral protein powder used as a replacement of fish meal on the growth performance, immune responses, intestinal microbiota and intestinal morphology of broiler chickens. Livestock Science, 207, 15–24.

Yang, X. -R., Zhang, L., Ding, D. -G., Chi, C. -F., Wang, B., & Huo, J. -C. (2019). Preparation, Identification, and Activity Evaluation of Eight Antioxidant Peptides from Protein Hydrolysate of Hairtail (Trichiurus japonicas) Muscle. Marine Drugs, 17(1), 23.

Yin, H., Pu, J., Wan, Y., Xiang, B., Bechtel, P. J., & Sathivel, S. (2010). Rheological and functional properties of catfish skin protein hydrolysates. Journal of Food Science, 75(1), E11–E17.

Yu, Z., Wang, Y., Zhao, W., Li, J., Shuian, D., & Liu, J. (2022). Identification of Oncorhynchus mykiss nebulin-derived peptides as bitter taste receptor TAS2R14 blockers by in silico screening and molecular docking. Food Chemistry, 368, 130839.

Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology, 20(2), 118–130.

Zhang, L., Zhao, G. X., Zhao, Y. Q., Qiu Y. -T., Chi, C. -F., Wang, B. (2019). Identification and active evaluation of antioxidant peptides from protein hydrolysates of Skipjack tuna (Katsuwonus pelamis) head. Antioxidants, 8(8), 313.

Descargas

Publicado

2022-05-18

Cómo citar

Espinoza, D., & Castillo, A. (2022). Avances tecnológicos en la obtención, identificación y producción de hidrolizados proteicos de residuos de pescado por acción enzimática: propiedades bioactivas y tecnofuncionales, aplicación en alimentos, mercado y regulación. Scientia Agropecuaria, 13(2), 135-148. https://doi.org/10.17268/sci.agropecu.2022.012

Número

Sección

Artículos de Revisión