Hidrólisis de las proteínas de anchoveta (Engraulis ringens) entera por acción de la enzima ProtamexTM

Autores/as

  • Gabriel Sifuentes-Penagos Escuela Académica de Ingeniería Agroindustrial, Universidad Nacional del Santa, Chimbote – Peru.
  • Susan León-Vásquez Escuela Académica de Ingeniería Agroindustrial, Universidad Nacional del Santa, Chimbote – Peru.
  • Augusto Castillo Escuela Académica de Ingeniería Agroindustrial, Universidad Nacional del Santa, Chimbote – Peru.

DOI:

https://doi.org/10.17268/sci.agropecu.2018.01.10

Palabras clave:

anchoveta entera, grado de hidrólisis, péptidos, Protamex™

Resumen

Hoy en día, es de gran relevancia el desarrollo de la obtención de hidrolizados proteicos a partir de carne de pescado por acción enzimática. El objetivo de la presente investigación fue evaluar el efecto de los factores de la reacción catalítica tales como, relación enzima sustrato (E/S), factor de dilución (D) y tiempo de reacción (t); con respecto al grado de hidrólisis (GH) de proteínas de anchoveta entera por acción de la enzima comercial Protamex™, la recuperación de proteínas (RP) y la distribución aparente del peso molecular (PM) del hidrolizado proteico. La hidrólisis se llevó a cabo en un reactor con un volumen de trabajo de 750 mL, a 55 ºC, a pH 7,5 y una velocidad de agitación de 100 rpm. Se encontró un comportamiento lineal positivo entre el GH y la relación enzima sustrato, mientras que para el factor de dilución fue un comportamiento lineal negativo, sin embargo, con el tiempo de reacción presentó un comportamiento no lineal. Los mismos resultados se hallaron para la RP. Por la metodología de superficie de respuesta se determinaron los valores de la relación enzima sustrato de 60 UA × kg-1 proteína cruda, un factor de dilución de 0,7 kg pescado × kg-1 agua y un tiempo de reacción de 60 min, que correspondieron a obtener los valores óptimos de GH de 16,90% y RP de 68,72% y el menor PM de los péptidos de 10,10 kDa. Se concluyó que el preparado enzimático comercial Protamex™, mostró una buena eficiencia en la extracción e hidrolisis de la proteína presente en la anchoveta entera.

Citas

Adler-Nissen, J. 1986. Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers, New York. 427 pp.

Ahn, C.; Lee, K.; Je, J. 2010. Enzymatic production of bioactive protein hydrolysates from tuna liver: Effects of enzymes and molecular weight on bioactivity. International Journal of Food Science and Technology 45: 562–568.

Aleman, A.; Gimenez, B.; Montero, P.; Gomez-Guillen, M.C. 2011. Antioxidant activity of several marine skin gelatins. LWT-Food Science and Technology 44: 407–413.

AOAC. 2005. Official methods of Analysis of A.O.A.C. International: Food Composition, Additives, Natural Contaminants. Gaithersburg, Maryland. EE.UU.

Baş, D.; Boyaci, I.H. 2005. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering 78: 836-845.

Benkajul, S.; Morrissey, M.T.; 1997. Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry 45: 3423–3430.

Chalamaiah, M.; Dinesh-Kumar B.; Hemalatha, R.; Jyothirmayi, T. 2011. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry 135: 3020–3038.

Chalamaiaha, M.; Dinesh kumara, B.; Hemalathab, R.; Jyothirmayic, T. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry 135(4): 3020 – 3038.

Cheftel, C.; Ahern, M.; Wang, D.I.C.; Tannenbaum, S.R. 1971. Enzymatic solubilisation of fish protein concentrate: Batch-studies applicable to continous enzyme recycling process. Journal of Agricultural and Food Chemistry 19: 155–161.

Cupp-Enyard, C. 2008. Sigma's Non-specific Protease Activity Assay - Casein as a Substrate. J. Vis. Exp. (19), e899.

De Oliveira, D.; Minozzoa, G.; Licodiedoffb, S.; Waszczynskyjc, N. 2016. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis. Food Chemistry 207: 187–194.

Diniz, F.M.; Marin, A.M. 1998. Influence of process variables on the hydrolysis of shark muscle protein. Food Science and Technology International 4:91-98.

FAOSTAT. 2015. Consumo de pescado y productos pesqueros http://www.fao.org/faostat/en/#data/CL

Fernández, A.; Kelly, P. 2016. pH-stat vs. free-fall pH techniques in the enzymatic hydrolysis of whey proteins. Food Chemistry 199: 409 – 415.

García-Moreno, P.G.; Guadix, A.; Guadix, E.M.; Charlotte, J. 2016. Physical and Oxidative Stability of Fish Oil-In-Water Emulsions Stabilized with Fish Protein Hydrolysates. Food Chemistry 203:124–135.

Guerard, F.; Dufosse, L.; De La Broise, D.; Binet, A. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis B: Enzymatic 11: 1051–1059.

Hale, M.B. 1969. Relative activities of commercial-available enzymes in the hydrolysis of fish protein. Food Technology 23: 107–110.

Halim, N.R.A.; Yusof, H.M.; Sarbon, N.M. 2016. Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends in Food Science & Technology 51: 24-33.

Hou, H.; Li, B.; Zhao, X.; Zhang, Z.; Li, P. 2011b. Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with lowbitterness. LWT–Food Science and Technology 44: 421–428.

Jai-Ganesh, R.; Nazeer, R.A.; Sampath-kumar, N.S. 2011. Purification and identification of antioxidant peptide from Black Pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate. Food Science and Biotechnology 20: 1087–1094.

Jang, H.L.; Liceaga, A.M.; Yoon, K.Y. 2016. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. Journal of Functional Foods 20: 433–442.

Jumardi, R.; Khairul Faezah Md, Y.; Norhafizah, A.; Siti Mazlina, M. 2014. Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agriculture and Agricultural Science Procedia 2: 312 – 319.

Klompong, V.; Benjakul, S.; Yachai, M.; Visessanguan, W.; Shahidi, F.; Hayes, K.D. 2009. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of Food Science 74: C126–C133.

Kolpakova, V.V.; Chumikina, L.V.; Vasil'ev, A.V.; Arabova, I.I.; Topunov, A.F. 2014. Wheat gluten proteolysis by enzyme preparations of directional action. International Journal of Agronomy and Agricultural Research 5: 72 – 86.

Kristinsson, H.G.; Rasco, B.A. 2000. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry 48: 657–666.

Liaset, B.; Julshamm, K.; Espe, M. 2003. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with Protamex™. Process Biochemistry 38: 1747 – 1759.

Liaset, B.; Nortvedt, R.; Lied, E.; Espe, M. 2002. Studies on the nitrogen recovery in enzymic hydrolysis of Atlantic salmon (Salmo salar L.) frames by Protamex™ protease. Process Biochemistry 37: 1263–1269.

Liaset, B.; Lied, E.; Espe, M. 2000. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterization and nutritional evalua-tion. Journal of the Science of Food and Agriculture 80: 581–589.

Lineweaver, H.; Burk, D. 1934. The Determination of Enzyme Dissociation Constants. Journal of American Chemical Society 56: 658.

Liu, C.; Morioka, K.; Itoh, Y.; Obatake, A. 2014. Contri-bution of lipid oxidation to bitterness and loss of free amino acids in the autolytic extract from fish wastes: Effective utilization of fish wastes. Fisheries Science 66: 343–348.

Missau, L.; Scheid, A.J.; Foletto, E.L.; Jahn, S.L.; Mazutti M.A.; Kuhn, R.C. 2014. Immobilization of commercial inulinase on alginate–chitosan beads. Sustainable Chemical Processes 2: 13.

Mohr, V. 1977. Fish protein concentrate production by enzymic hydrolysis. Biochemical aspects of New Protein Food 44: 53–62.

Morales-Medina, R.; Munio, M.; Guadix, E.M.; Camacho, F. 2018. A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglucerols. Food Chemestry 240: 286 – 294.

Nilsang, S.; Lertisiri, S.; Suphantharika, M.; Assavanig, A. 2005. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering 70: 571-578.

Novozymes A/S. Protamex™ Product Sheet. 1998, B716d-GB, 1:2.

Ordoñez, L.R.; Hernández, E.M. 2014. Efecto del Proceso de Elaboración de la Conserva "Desmenuzado de Anchoveta" (Engraulis ringens) sobre los Ácidos Grasos Poliinsaturados Omega 3. Ciencia e Investigación 17: 27-32.

Pagán, J.; Ibarz, A.; Falguera, V.; Benítez, R. 2013. Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. Journal of Food Engineering 119: 655–659.

Reyes-García, M.; Gómez-Sánchez, I.; Espinoza-Barrien-tos, C.; Bravo-Rebatta, F.; Ganoza-Morón, L. 2009. Tabla Peruana de Composición de Alimentos. 8.ª ed. Lima: Ministerio de Salud, Instituto Nacional de Salud.

Schagger, H.; Jagow, G.V. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166: 368-379.

Shikha, O.; Alvarez, C.; Kumar, P.; O'Donnell, C.; Tiwari, B. 2016. Effect of enzymatic hydrolysis on the production of free amino acids from boarfish (Capros aper) using second order polynomial regression models. Food Science and Technology 68: 470-476.

Song, S.; Li, S.; Fan, L.; Hayat, K.; Xiao, Z.; Chen, L.; Tang, Q. 2016. A novel method for beef bone protein extraction by lipase-pretreatment and its application in the Maillard reaction. Food Chemistry 208: 81–88.

Tang, W., Zhanga, H., Wanga, L., Qiana, H., Qia, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry 168: 115-123.

Valencia, P.; Pinto, M.; Almonacid, S. 2014. Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase. Process Biochemistry 49: 258–264.

Villamil, O.; Váquiro, H.; Solanilla, J.F. 2017. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry 224(1): 160-171.

Xi-Qun, Z.; Jun-Tong, W.; Xiao-Lan, L.; Ying, S.; Yong-Jie, Z.; Xiao-Jie, W.; Yue, L. 2015. Effect of hydrolysis time on the physicochemical and functional proper-ties of corn glutelin by Protamex hydrolysis. Food Chemistry 172: 407–415.

Zhang, W.; Li, Y.; Zhang, J.; Huang, G. 2016. Optimization of Hydrolysis Conditions for the Production of Iron-Binding Peptides from Scad (Decapterus maruadsi) Processing Byproducts. American Journal of Biochemistry and Biotechnology 12: 220 – 229.

Zheng, X.-Q.; Liu, X.-L.; Wang, X.-J.; Lin, J.; Li, D. 2006. Production of hydrolysate with antioxidative activity by enzymatic hydrolysis of extruded corn gluten. Applied Microbiology and Biotechnology 73: 763–770.

Received September 12, 2017.

Accepted February 11, 2018.

Corresponding author: acascal2002@yahoo.es (A. Castillo).

Descargas

Publicado

2018-03-27

Cómo citar

Sifuentes-Penagos, G., León-Vásquez, S., & Castillo, A. (2018). Hidrólisis de las proteínas de anchoveta (Engraulis ringens) entera por acción de la enzima ProtamexTM. Scientia Agropecuaria, 9(1), 93-102. https://doi.org/10.17268/sci.agropecu.2018.01.10

Número

Sección

Artículos originales