Rhizospheric actinomycetes from organic crops of native potato (Solanum tuberosum): isolation, phenotypic characterization, molecular identification, and impact on biocontrol of Phytophthora infestans (Mont.) de Bary

Autores

DOI:

https://doi.org/10.17268/sci.agropecu.2020.02.09

Palavras-chave:

actinobacteria, Phytophthora infestans, native potato, biocontrol of pests, antagonism.

Resumo

Potato (Solanum tuberosum L.) is the fourth most consumed food crop in the world, whose production in Peru is diminished due to phytosanitary problems and high costs of chemical fertilizers. In the present work, 32 actinomycetes isolated from the rhizosphere of organic native potato crops collected in the town of Cabana, Lucanas, Ayacucho, were characterized phenotypically and evaluated for their in vitro antagonistic capacity against Oomycete phytopathogen Phytophthora infestans. The characterization tests showed that 97% of the actinomycetes were able to assimilate glucose, sucrose, and mannitol; as well as producing extracellular enzymes like amylases (100%) and cellulases (50%). Furthermore, the growth in laboratory culture was better in the range of pH 5.5-8.5 and temperature 28-30 °C. From the tests of antagonism in oat agar (71.9%) and rye agar (31.2%), three strains were selected according to the native potato variety were selected as CAB10-J2 (Ccompis), CAB9-CA4 (Cuchipa-akan) and CAB5-F5 (Futis) with pathogen inhibition rates of 80.05, 77.47 and 37.5% respectively. The strains were identified by molecular tests as members of the genus Streptomyces and owners of polyketide synthase (PKS) genes. It is concluded that the rhizospheric actinomycetes of potato are producers of bioactive compounds capable of remarkably inhibiting the pathogen Phytophthora infestans, being able to be considered candidates in biological control programs of the "potato blight".

Referências

Bertschinger, L.; Buhler, L.; Dupuis, B.; et al. 2017. Incomplete Infection of Secondarily Infected Potato Plants – an Environment Dependent Underestimated Mechanism in Plant Virology. Front. Plant Sci. 8: 74.

Calvo, P.; Zúñiga, D. 2010. Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecología Aplicada 9(1): 31-39.

Cardona-Piedrahita, L.; Castaño-Zapata, J.; Ceballos-Aguirre, N. 2016. Epidemiología del tizón tardío [Phytophthora infestans (Mont.) de Bary] en quince introducciones de tomate silvestre. Revista U.D.C.A Actualidad & Divulgación Científica 19(1): 45-54.

Caro, J. 2016. Capacidad antagonista de actinomicetos aislados de la rizósfera de la papa (Solanum tuberosum sp. andigena) para el control de hongos fitopatógenos de importancia agrícola. Tesis de grado, Universidad Nacional Mayor de San Marcos, Lima. Perú. 120 pp.

Cisneros, J. 2016. Aislamiento y selección de actinomicetos rizosféricos con potencial aplicación como bioinoculante en el cultivo de Solanum tuberosum sp. andigena (Papa). Tesis de grado, Universidad Nacional Mayor de San Marcos, Lima. Perú. 93 pp.

Chen, P.; Zhang, C.; Ju, X.; et al. 2019. Community Composition and Metabolic Potential of Endophytic Actinobacteria From Coastal Salt Marsh Plants in Jiangsu, China. Front Microbiol. 10: 1063.

Colona, E.; Galindo, N.; León, J.; et al. 2014. Desarrollo de un método para la observación de actinomicetos por microscopía electrónica de barrido. En XXIII Reunión Científica ICBAR, Perú, 12-14 ago, 2014.

De Vrieze, M.; Gloor, R.; Codina, J.; et al. 2019. Biocontrol Activity of Three Pseudomonas in a Newly Assembled Collection of Phytophthora infestans Isolates. Phytopathology 109(9): 1555-1565.

Di Francesco, A.; Milella, F.; Mari, M.; et al. 2017. A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological control 114: 144-149.

Ezziyyani, M.; Pérez, C.; Requena, M.; et al. 2004. Biocontrol por Streptomyces rochei– Ziyani, de la podredumbre del pimiento (Capsicum annum L.) causada por Phytophthora capsici. Anales de Biología 26: 69-78.

Feng, Z.; Chen, G., Zhang, J.; et al. 2019. Characterization and Complete Genome Analysis of the Carbazomycin B-Producing Strain Streptomyces luteoverticillatus SZJ61. Current Microbiology 76: 982-987.

Fonseca, Y.; Castellanos, D.; León, T. 2011. Efecto antagónico in vitro de actinomicetos aislados de purines de chipaca (Bidens pilosa L.) frente a Phytophthora infestans (Mont) de Bary. Rev. Fac. Nal. Agr. Medellín 64(2): 6111-6119.

Franco-Correa, M. 2009. Utilización de los actinomicetos en procesos de biofertilización. Revista Peruana de Biología 16(2): 239-242.

Kumar, S.; Stecher, G.; Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7):1870-1874.

Li, L.; Xu, M.; Eyabuk, M.; et al. 2018. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS One 13(9): e0203812.

Mariastuti, H.; Listiyowati, S.; Wahyudi, A. 2018. Antifungal activity of soybean rhizosphere actinomycetes producing bioactive compounds against Fusarium oxysporum. Biodiversitas 19(6): 2127-2133.

Marín, M.; Wong, I.; García, G.; et al. 2013. Actividad antagónica in vitro de Tsukamurella paurometabola C-924 frente a fitopatógenos. Rev. Protección Veg. 28(2): 132-137.

Ministerio de Agricultura y Riego. 2016. Papa: Características de la Producción Nacional y de la Comercialización en Lima Metropolitana. Ministerio de Agricultura y Riego, Perú. 13 pp.

Parada, R.; Marguet, E.; Vallejo, M. 2017. Aislamiento y caracterización parcial de actinomicetos de suelos con actividad antimicrobiana contra bacterias multidrogo-resistentes. Rev. Colomb. Biotecnol. 19(2): 15-23.

Pérez, F.; León, J.; Galindo, N. 2015. Actinomicetos aislados del compost y su actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena Hawkes). Rev. Mex. Fitopatol. 33(2): 116-139.

Puopolo, G.; Palmieri, M.; Giovannini, O.; et al. 2015. Impact of temperature on the survival and the biocontrol efficacy of Lysobacter capsici AZ78 against Phytophthora infestans. BioControl 60: 681-689.

Rico, M. 2009. Capacidad promotora de crecimiento vegetal por bacterias del género Azotobacter y Actinomicetos aislados de cultivos de Solanum tuberosum Linnaeus, 1753 (papa) cultivados en zonas altoandinas del Perú. Tesis de grado, Universidad Nacional Mayor de San Marcos, Lima. Perú. 152 pp.

Sinha, K.; Hegde, R.; Kush, A. 2014. Exploration on native actinomycetes strains and their potential against fungal plant pathogens. Int. J. Curr. Microbiol. App. Sci. 3(11): 37-45.

Stefańczyk, E.; Sobkowiak, S.; Brylińska, M; et al. 2016. Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. European Journal of Plant Pathology 145: 871-884.

Tang, J.; Xue, Z.; Daroch, M.; et al. 2015. Impact of continuous Salvia miltiorrhiza cropping on rhizosphere actinomycetes and fungi communities. Annals of Microbiology 65: 1267-1275.

Virmond, E.; Kawakami, J.; Souza-Diaz, J. 2017. Seed-potato production through sprouts and field multiplication and cultivar performance in organic system. Hortic. Bras. 35(3): 335-342.

Whitman, W.; Goodfellow, M.; Kampfer, P.; et al. 2012. Bergey’s manual of determinative bacteriology. Volume 5: The Actinobacteria. 2nd edition. Springer Science & Business Media, USA. 1750 pp.

Xue, L.; Xue, Q.; Chen, Q.; et al. 2013. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection 43: 231-240.

Publicado

2020-06-08

Como Citar

Chumpitaz, A., Caro, J., Cruz, W., & León, J. (2020). Rhizospheric actinomycetes from organic crops of native potato (Solanum tuberosum): isolation, phenotypic characterization, molecular identification, and impact on biocontrol of Phytophthora infestans (Mont.) de Bary. Scientia Agropecuaria, 11(2), 223-231. https://doi.org/10.17268/sci.agropecu.2020.02.09

Edição

Seção

Artículos originales