Biopelículas de Staphylococcus spp. sobre acero inoxidable utilizando leche y brain heart infusion broth como medios de cultivo
DOI:
https://doi.org/10.17268/sci.agropecu.2018.04.03Palavras-chave:
Superficies de contacto, medios de cultivo, biopelículas bacterianas, MEB.Resumo
Staphylococcus spp. tiene la capacidad de adherirse y desarrollar biopelículas sobre diferentes superficies de contacto. Así el objetivo de la presente investigación fue comparar la producción de biopelículas de Staphylococcus spp. sobre acero inoxidable empleando dos medios de cultivo, leche Ultra High Temperatura (UHT) y Brain Heart Infusion broth (BHI). Se realizaron recuentos microbiológicos de las células adheridas en dos tiempos (12 y 24 h), en los dos medios de cultivo, incubados a 25 °C. Los recuentos de las células adheridas fueron analizados mediante ANOVA y comparación de medias por el test de Duncan (p < 0,05). Las biopelículas de dos cepas (cepa silvestre y cepa de tipo) cultivadas por 12 h en BHI, fueron observadas empleando microscopia electrónica de barrido (MEB). Se obtuvieron recuentos microbiológicos entre 7 y 8 log UFC/cm2. Fue observada diferencia significativa entre las cepas evaluadas, mientras que, no hubo diferencia significativa en los tiempos y medios de cultivo evaluados. Fue comprobado a través de la MEB que la cepa silvestre S.a2 presentó considerable producción de biopelículas, como era esperado de acuerdo con los resultados encontrados en los recuentos microbiológicos. Esto indicaría que la leche proporciona condiciones adecuadas para la formación de biopelículas de Staphylococcus spp. sobre acero inoxidable.
Referências
Acco, M.; Ferreira, F.S.; Henriques, J.A.P.; Tondo, E.C. 2003. Identification of multiple strains of Staphylococcus aureus colonizing nasal mucosa of food handlers. Food Microbiol 20: 489–493.
Ait Ouali, F.; Al Kassaa, I.; Cudennec, B.; Abdallah, M.; Bendali, F.; Sadoun, D.; Chihib, N.E.; Drider, D. 2014. Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int. J. Food Microbiol. 191: 116–124.
Allignet, J.; Aubert, S.; Dyke, K.G.; El Solh, N. 2001. Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation. Infect. Immun. 69: 712–718.
André, M.C.D.P.B.; Campos, M.R.H.; Borges, L.J.; Kipnis, A.; Pimenta, F.C.; Serafini, Á.B. 2008. Comparison of Staphylococcus aureus isolates from food handlers, raw bovine milk and Minas Frescal cheese by antibiogram and pulsed-field gel electrophoresis following SmaI digestion. Food Control 19: 200–207.
Arciola, C.R.; Baldassarri, L.; Montanaro, L. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol 39: 2151–2156.
van Belkum, A.; Verkaik, N.J.; de Vogel, C.P.; Boelens, H.A.; Verveer, J.; Nouwen, J.L.; Verbrugh, H.A.; Wertheim, H.F.L. 2009. Reclassification of Staphylococcus aureus Nasal Carriage Types. J. Infect. Dis. 199: 1820–1826.
Chokr, A.; Watier, D.; Eleaume, H.; Pangon, B.; Ghnassia, J.-C.; Mack, D.; Jabbouri, S. 2006. Correlation between biofilm formation and production of polysaccharide intercellular adhesion in clinical isolates of coagulase - negative staphylococci. Int. J. Med. Microbiol. 296: 381–388.
Di Ciccio, P.; Vergara, A.; Festino, A.R.; Paludi, D.; Zanardi, E.; Ghidini, S.; Ianieri, A. 2015. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50: 930–936.
Dutra, T.V.; Fernandes, M. da S.; Perdoncini, M.R.F.G.; Anjos, M.M.; Abreu Filho, B.A. 2018. Capacity of Escherichia coli and Staphylococcus aureus to produce biofilm on stainless steel surfaces in the presence of food residues. Journal of Food Processing and Preservation 42(4): e13574.
Castañeda-Ruelas, G.M.; Soto-Beltrán, M.; Chaidez, C. 2017. Detecting Sources of Staphylococcus aureus in One Small-Scale Cheese Plant in Northwestern Mexico. Journal of Food Safety 37(1): e12290.
Contreras, G.A.; Rodríguez, J.M. 2011. Mastitis: compa-rative etiology and epidemiology. J. Mammary Gland Biol. Neoplasia 16: 339–356.
Cruzado, M.L.M.; Silva, N.C.; Rodrigues, M.X.; Trevilin, J.H.; Scarpelin, C.; Sturion, G.L.; Porto, E. 2015. Biofilm formation by Staphylococcus spp on stainless steel and polypropylene. 28° Congresso Brasileiro de Microbiologia. Florianopolis, SC.
Giannuzzi, I.; Parada, J.L. 1991. Crecimiento de Staphylococcus aureus en medios sólidos de actividad acuosa inferior a 0,86. Rev. argent. microbiol. 23: 79–85.
Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian J. Infect. Dis. 15: 305–311.
Heilmann, C. 2011. Adhesion Mechanisms of Staphylo-cocci. In Bacterial Adhesion. Dirk Linke and Adrian Goldman, editors. Springer, Dordrecht. 105–123.
Honeyman, A.; Friedman, H.; Bendinelli, M. 2002. Staphylococcus aureus infection and disease. Kluwer Academic. 330 pp.
Jørgensen, H.J.; Mørk, T.; Rørvik, L.M. 2005. The occurrence of Staphylococcus aureus on a farm with small-scale production of raw milk cheese. J. Dairy Sci. 88: 3810–3817.
Karatan, E.; Watnick, P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73: 310–47.
Khoramrooz, S.S.; Mansouri, F.; Marashifard, M.; Malek Hosseini, S.A.A.; Chenarestane-Olia, F.; Ganavehei, B.; Gharibpour, F.; Shahbazi, A.; Mirzaii, M.; Darban-Sarokhalil, D. 2016. Detection of biofilm related genes, classical enterotoxin genes and agr typing among Staphylococcus aureus isolated from bovine with subclinical mastitis in southwest of Iran. Microb. Pathog. 97: 45–51.
Kroning, I.S.; Iglesias, M.A.; Sehn, C.P.; Valente Gandra, T.K.; Mata, M.M.; da Silva, W.P. 2016. Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimi-crobial resistance. Food Microbiol. 58: 105–111.
Kuroda, M.; Ohta, T.; Uchiyama, I.; Baba, T.; Yuzawa, H.; Kobayashi, I.; et al. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 357: 1225–1240.
Le, K.Y.; Dastgheyb, S.; Ho, T.V.; Otto, M. 2014. Mole-cular determinants of staphylococcal biofilm dispersal and structuring. Front. Cell. Infect. Microbiol. 4: 167.
Liaqat, I. 2011. An overview of biofilm formation, properties and control. Int. J. Med. Biol. Front. 17: 1081–3829.
Mack, D.; Haeder, M.; Siemssen, N.; Laufs, R. 1996. Association of biofilm production of coagulase-negative Staphylococci with expression of a specific polysaccharide intercellular adhesin. J. Infect. Dis. 174: 881–884.
Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Daniel, D.H.; Buckley, H.; Stahl, D.A. 2016. Brock biology of microorganisms. 14th ed. 1006 pp.
Marques, S.C.; Rezende, J.D.G.O.S.; Alves, L.A.D.F.; Silva, B.C.; Alves, E.; De Abreu, L.R.; Piccoli, R.H. 2007. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Brazilian J. Microbiol. 38: 538–543.
Martin, J.G.P.; Silva, G.D.O.; da Fonseca, C.R.; Morales, C.B.; Silva, C.S.P.; Miquelluti, D.L.; Porto, E. 2016. Efficiency of a cleaning protocol for the removal of enterotoxigenic Staphylococcus aureus strains in dairy plants. Int. J. Food Microbiol. 238: 295–301.
Meesilp, N.; Mesil, N. 2018. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Science and Biotechnology (In press).
Patti, J.M.; Allen, B.L.; Mcgavin, M.J.; Hook, M. 1994. MSCRAMM -Mediated Adherence of Microorganisms to Host Tissues. Annu. Rev. Microbiol. 48: 585–617.
Rodrigues, M.X.; Silva, N.C.C.; Trevilin, J.H.; Cruzado-Bravo, M.; Mui, T.S.; Duarte, F.R.S.; Castillo, C.J.C.; Canniatti-Brazaca, S.G.; Porto, E. 2017. Molecular characterization and antibiotic resistance of Staphylococcus spp. isolated from cheese processing plants. J. Dairy Sci. 100: 5167–5175.
Sanclement, J.; Webster, P.; Thomas, J.; Ramadan, H.H. 2005. Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis. Laryngoscope. 115: 578–582.
Siljamäki, P.; Varmanen, P.; Kankainen, M.; Sukura, A.; Savijoki, K.; Nyman, T.A. 2014. Comparative Exoprotein Profiling of Different Staphylococcus epidermidis Strains Reveals Potential Link between Nonclassical Protein Export and Virulence. J. Proteome Res. 13: 3249–3261.
Simeão do Carmo, L.; Dias, R.S.; Linardi, V.R.; José de Sena, M.; Aparecida dos Santos, D.; Eduardo de Faria, M.; Pena, E.C.; Jett, M.; Heneine, L.G. 2002. Food poisoning due to enterotoxigenic strains of Staphylococcus present in Minas cheese and raw milk in Brazil. Food Microbiol. 19: 9–14.
Son, H.; Park, S.; Beuchat, L.R.; Kim, H.; Ryu, J.-H. 2016. Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel. Int. J. Food Microbiol. 238: 165–171.
Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Methods Microbiol. J. Microbiol. Methods 40: 175–179.
Vasudevan, P.; Nair, M.K.M.; Annamalai, T.; Venkitana-rayanan, K.S. 2003. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet. Microbiol. 92: 179–185.
Vatansever, L.; Sezer, Ç.; Bilge, N.; Collignon, P.; Powers, J.; Chiller, T.; et al. 2016. Carriage rate and methicillin resistance of Staphylococcus aureus in food handlers in Kars City, Turkey. Springerplus. 5: 608.
Vázquez-Sánchez, D.; Habimana, O.; Holck, A. 2013. Impact of Food-Related Environmental Factors on the Adherence and Biofilm Formation of Natural Staphylococcus aureus Isolates. Curr. Microbiol. 66: 110–121.
Vlková, H.; Babák, V.; Seydlová, R.; Pavlík, I.; Schlegelova, J. 2008. Biofilms and hygiene on dairy farms and in the dairy industry: Sanitation chemical products and their effectiveness on biofilms - A review. Czech J. Food Sci. 26: 309–323.
Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5: 751–762.
Zhang, L.; Li, Y.; Bao, H.; Wei, R.; Zhou, Y.; Zhang, H.; Wang, R. 2016. Population structure and antimicrobial profile of Staphylococcus aureus strains associated with bovine mastitis in China. Microb. Pathog. 97: 103–109.
Zhang, Y.Q.; Ren, S.X.; Li, H.L.; Wang, Y.X.; Fu, G.; Yang, J.; Qin, Z.Q.; Miao, Y.G.; Wang, W.Y.; Chen, R.S.; Shen, Y.; Chen, Z.; Yuan, Z.H.; Zhao, G.P.; Qu, D.; Danchin, A.; Wen, Y.M. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49: 1577–1593.
Zottola, E.A.; Sasahara, K.C. 1994. Microbial biofilms in the food processing industry - Should they be a concern? Int. J. Food Microbiol. 23: 125–148.
Received May 18, 2018.
Accepted October 12, 2018.
Corresponding author: mcruzado@usp.br (M. Cruzado-Bravo).
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).