Adsorción del cianuro contenido en solución acuosa usando carbón activo obtenido de residuo de café: eficiencia de absorción, modelado de equilibrio y cinética



Palabras clave:

Adsorción, carbón activo, cianuro, isotermas, residuos de café.


Esta investigación tuvo como objetivo, evaluar el proceso de adsorción del CN- contenido en solución acuosa sintética, usando carbón activo obtenido de residuo de café; estudiando su eficiencia y los modelos de equilibrio y cinético. Análisis de infrarrojo con transformada de Fourier (FTIR), difracción de rayos X (DRX) y determinación del número de yodo se realizaron para caracterizar al carbón activo. Se aplicó un diseño central compuesto (DCC) con tres factores adaptados a tres niveles cada uno y 6 puntos centrales para estudiar el efecto del pH (A), el tiempo de contacto (B) y la dosificación de adsorbente (C); según el análisis de varianza, todos los factores principales y la interacción AA fueron significativas en la eficiencia de adsorción de cianuro sobre el carbón activo, cuyo valor máximo alcanzado fue de 54,68% y de 67,65% para el nivel predictivo. De acuerdo al coeficiente de determinación (R2), el modelo isotérmico de Freundlich (0,954) y las tres ecuaciones cinéticas de pseudo segundo orden (0,991, 0,993, 0,993) se ajustaron al proceso experimental. De los resultados obtenidos, el carbón activo preparado de residuo de café puede ser utilizado como potencial adsorbente de CN-, contenido en soluciones acuosas de bajas concentraciones.

Biografía del autor/a

Gonzalo Aranguri-Llerena, Universidad Nacional de Trujillo

Wilson Reyes-Lázaro, Universidad Nacional de Trujillo.


Al Bahri, M.; Calvo, L.; Gilarranz, M.; Rodriguez, J. 2012. Activated carbon from grape seeds upon chemical activation with phosphoric

Aranguri, G.; Reyes-lópez, I. 2018. Cyanide degradation from mining effluent using two reagents: Sodium metabisulphite and the metabisulphite mixture with hydrogen peroxide. Tecciencia 13 (25): 1-9.acid: Application to the adsorption of diuron from water. Chemical Engineering Journal 203: 348-356.

Asgari, G.; Ramavandi, B.; Mohammadi, S. M.; Pour, A. M. 2012. The investigation of kinetic and isotherm of cyanide adsorption onto bone charcoal. En 4th International Conference on Chemical, Biological and Environmental Engineering 43: 119-124.

ASTM-D 4607. 2006. Determination of iodine number of activated carbon. En Estandard Test Method International. Estados Unidos. Pp. 1-5.

Awasthi, G.P.; Bhattarai, D.P.; Maharjan, B.; Kyung-Suk, K.; Park, C.H.; Kim, C.S. 2019. Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications. Journal of Industrial and Engineering Chemistry 72: 262-272.

Azamat, J.; Khataee, A. 2017. Molecular dynamics simulations of removal of cyanide from aqueous solution using boron nitride nanotubes. Computational Materials Science 128: 8-14.

Ballesteros, L.; Teixeira, J.; Mussatto, S. 2014. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology 7(12): 3493-3503.

Botz, M.M.; Mudder, T.H.; Akcil, A.U. 2016. Cyanide treatment: Physical, chemical and biological processes. En M. D. Adams (Comp.), Gold Ore Processing: Project Development and Operations. Elsevier, Amsterdam. Pp. 619-645.

Dwivedi, N.; Balomajumder, C.; Mondal, P. 2016. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resources and Industry 15: 28-40.

Dwivedi, N.; Balomajumder, C.; Mondal, P. 2014. Studies of kinetic and equilibrium isotherm models for the sorption of cyanide ion on to almond shell. Research Journal of Chemical Sciences 4(2): 20-24.

Eletta, O.A.; Ajayi, O.A.; Ogunleye, O.O.; Akpan, I.C. 2016. Adsorption of cyanide from aqueous solution using calcinated eggshells: Equilibrium and optimisation studies. Journal of Environmental Chemical Engineering 4(1): 1367-1375.

Fombuena, M.; Valentín, A. 2010. Manual del carbón activo. Universidad de Sevilla.

Gebresemati, M.; Gabbiye, N.; Sahu, O. 2017. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. Journal of Applied Research and Technology 15: 27-35.

Ghanizadeh, G; Asgari, G. 2010. Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal. Reac Kinet Mech Cat 102(1): 127-142.

Greenberg, A.E., Clesceri, L.S., Eaton, A.D. 1992. Standard Methods for the Examination of Water and Wastewater. 18 th edition. American Public Health Association. Washington.

Guang-zhen, Z.; Xian-lun, D.; Hou, M.; Sun, K.; Yan-ping, Z.; Li, P.; Fang-min, L. 2016. Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Processing Technology 144: 255-261.

Gupta, N.; Balomajumder, C.; Agarwa, V. K. 2013. Adsorptive treatment of cyanide-bearing wastewater: a prospect for sugar industry waste. Chemical Engineering Communications 200: 993-1007.

Gupta, N.; Balomajumder, C.; Agarwal, V. 2012. Adsorption of cyanide ion on pressmud surface: A modeling approach. Chemical Engineering Journal 191: 548-556.

Halet, F., Yeddou, A. R., Chergui, A., Chergui, S., Boubekeur, N.; Ould-Dris, A. 2015. Removal of cyanide in aqueous solution by adsorption on activated carbon prepared from lignocellulosic by products. Journal of Dispersion Science and Tecnology 36(12): 1736-1741.

Herrera, E.L.; Feijoo, C.Y.; Alfaro, R.; Solís, J.L.; Gómez, M.M.; Keiski, R.L.; Cruz, G.J. 2018. Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (Sapote). Scientia Agropecuaria 9(4): 569-577.

Imessaoudene, D.; Hanini, S.; Bouzidi, A.; Ararem, A. 2016. Kinetic and thermodynamic study of cobalt adsorption by spent coffee. Desalination and Water Treatment 57(13): 6116-6123.

Liu, C.; Pujol, D.; Olivella, M.; De la Torre, F.; Fiol, N.; Poch, J.; Villaescusa, I. 2015. The Role of Exhausted Coffee Compounds on Metal Ions Sorption. Water Air Soil Pollut 226: 1- 10.

Luque-Almagro; V., Moreno-Vivián, C.; Roldán, M. 2016. Biodegradation of cyanide wastes from mining and jewellery industries. Biotech-nology 38:9-13.

Ma, X.; Ouyang, F. 2013. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Applied Surface Science 268: 566-570.

Molina-Sabio, M.; Rodríguez-Reinoso, F. 2004. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochem. Eng. Aspects 241: 15-25.

Mondal, M.; Mukherjee, R.; Sinha, A.; Sarkar, S.; De, S. 2019. Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry. Journal of Water Process Engineering 28: 135-143.

Mussatto, S.I.; Machado, E.M.; Martins, S.; Teixeira, J.A. 2011. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technology 4: 661-672.

Naeem, S.; Zafar, U.; Amann, T. 2011. Adsorp-tion studies of cyanide (CN)- on rice husk ash (RHA). Bangladesh Journal of Scientific and industrial Research 46: 101-104.

NMX-F-296-SCFI. 2011. Norma mexicana NMX-F-296-SCFI-2011 Industria azucarera y alco-holera - determinación del número de yodo en muestras de carbones activados emplea-dos en la refinación de azúcar. Mexico: 1-11.

Rattanapan, S.; Srikram, J.; Kongsune, P. 2017. Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia 138: 949-954.Oliveira, L.S.; Franca, A.S. 2015. An overview of the potential uses for coffee husks. En V. Preedy (Ed.), Coffee in Health and Disease Prevention. Elsevier. Londres. Pp. 283-291.

Rawal, S.; Joshi, B.; Kumar, Y. 2018. Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. Journal of Energy Storage 20: 418-426.

Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Lehocine, B.; Dubois, M.; Btisse, N.; Duclaux, L. 2010. Carbons prepared from coffee grounds by H3PO4 activation: Characteriza-tion and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials 175(1-3): 779-788.

Shamsuddin, M.; Yusoff, N.; Sulaiman, M. 2016. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry 19: 558-565.

Singh, N.; Balomajumder, C. 2016. Simultaneous removal of phenol and cyanide from aqueous solution by adsorption onto surface modified activated carbon prepared from coconut shell. Journal of Water Process Engineering 9: 233-245

Stavropoulos, G.G.; Papadopoulou, M.; Papadi-mitriou, K. 2015. A kinetic and thermo-dynamic study of cyanide adsorption in activated carbon. Desalination and Water treatment 57(46): 1-5.

Tsunatu, D. Y.; Taura, U. H.; Jirah, E. U. 2015. Kinetic studies of bio-sorption of cyanide ions from aqueous solution using carbon black developed from shea butter seed husk as an adsorbent. American Chemical Science Journal 8: 1-12.

Vogel, A.I. 1989. Text book of quantitative chemi-cal analysis. 5ta Edicion. Longman Group UK Limite, Londres. 358 pp.

Weber, W.J.; Morris, J.C. 1963. Kinetics of adsorption carbon from solutions. Journal Sanitary Engeering Division Proceedings. American Society of Civil Engineers 89: 31-60.

Received March 6, 2019.

Accepted August 26, 2019.

Corresponding author: (G. Aranguri-Llerena).




Cómo citar

Aranguri-Llerena, G., & Reyes-Lázaro, W. (2019). Adsorción del cianuro contenido en solución acuosa usando carbón activo obtenido de residuo de café: eficiencia de absorción, modelado de equilibrio y cinética. Scientia Agropecuaria, 10(3), 315-325.



Artículos originales