Macro and microelements, lead, cadmium, functional compounds, antioxidant capacity in fresh, dry cocoa beans and cocoa paste

Autores/as

  • María E. Tolentino Universidad Nacional Agraria de la Selva
  • Pedro Camasca Cooperativa Agraria Cafetalera Divisoria Ltda. Peru
  • Pedro P. Peláez Universidad Nacional Agraria de la Selva http://orcid.org/0000-0001-9127-2068

DOI:

https://doi.org/10.17268/sci.agropecu.2019.04.09

Palabras clave:

Analysis of main components, minerals, process, cocoa

Resumen

The cocoa bean and its by-products are widely consumed in the world, due to their mineral content, functional compounds and antioxidant capacity, which vary according to how its processed. Fresh dried cocoa beans (FDB), dry fermented beans (FB) and cocoa paste (CP) were investigated, 31 samples in each case. Phosphorus, sodium, calcium, magnesium, copper, iron, zinc, manganese, cadmium lead, total polyphenols, anthocyanins, antioxidant capacity (ABTS, DPPH) expressed in Trolox equivalents (TE) were determined. Principal component analysis (PCA) was used. The mineral analysis established that 12 samples influenced CP1 and CP2. There was more calcium in the M26 sample of FDB, with 3.14%; potassium in the FDB, in M13, with 2.44%. Zinc in the FDB, was found in greater quantity in M30, M22, M23 and M9; with 90.46 ± 0.19 ppm in M30. Twenty-five samples reached values ≤ 0.61 ± 0.01 ppm of cadmium. There was a higher lead content in the FDB, in the M20 sample with 3.44 ± 0.05 ppm. The M10 sample, from FDB, presented the highest antioxidant capacity, with values of 591.50 ± 3.76 (ABTS) and 513.68 ± 0.84 (DPPH) μM TE/g.

Biografía del autor/a

María E. Tolentino, Universidad Nacional Agraria de la Selva

Pedro Camasca, Cooperativa Agraria Cafetalera Divisoria Ltda. Peru

Pedro P. Peláez, Universidad Nacional Agraria de la Selva

Citas

APCACAO. 2015. Asociación Peruana de Productores de Cacao, Perú. Pp. 3-9.

Bakircioglu, D.; Topraksever, N.; Yurtsever, S.; Kizildere, M.; Kurtulus, Y. B. 2018. Investigation of macro, micro and toxic element concentrations of milk and fermented milks products by using an inductively coupled plasma optical emission spectrometer, to improve food safety in Turkey. Microchemical Journal 136: 133–138.

Barrueta, M. 2013. Guía de métodos de detección y análisis de cadmio en cacao. Perú. Pp 1-45.

Bernardo, C.O.; Ascheri, J.L.R.; Chávez, D.W. H.; Carvalho, C.W.P. 2018. Ultrasound Assisted Extraction of Yam (Dioscorea bulbífera) Starch: Effect on Morphology and Functional Properties. Starch - Stärke 70: 5-6.

Bertoldi, D.; Barbero, A.; Camin, F.; Caligiani, A.; Larcher, R. 2016. Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control 65: 46–53.

Bilandžić, N.; Sedak, M.; Đokić, M.; Božić, Đ.; Vrbić, A. 2015. Content of macro- and microelements and evaluation of the intake of different dairy products consumed in Croatia. Journal of Food Composition and Analysis 40: 143–147.

Brand-Williams, W.; Cuvelier, M.E.; Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1): 25–30.

Calderón, F.; Pavlova, M. 2004. Metodologías del análisis foliar. Calderón Laboratorios Ltda., Bogotá D.C., Colombia SA. Disponible en: http://www.drcalderonlabs.com/Metodos/Analisis_Foliar/Metodos_Analisis_Foliares.htm

Djikeng, F.T.; Teyomnou, W.T.; Tenyang, N.; Tiencheu, B.: Morfor, A.T.; Touko, B.A.H.; … Womeni, H.M. 2018. Effect of traditional and oven roasting on the physicochemical properties of fermented cocoa beans. Heliyon 4(2): e00533.

Esbensen, K.; Swarbrick, B. 2017. Multivariate Data Analysis. 6th Edition. Copenhagen, Sydney, Oslo, EEUU. Pp. 1-452.

Fartusie, F.: Mohssan, S. 2017. Essential Trace Elements and Their Vital Roles in Human Body. Indian Journal of Advances in Chemical Science India 5(3): 127-136.

Gharibzahedi, S.; Jafari, S. 2017. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science & Technology, Iran 62: 119–132.

IMCO, 2015. Principales países productores de cacao. Instituto Mexicano para la Coperatividad A.C. México. Available in: https://imco.org.mx/home/

Lewis, C.; Lennon, A.; Eudoxie, G.; Umaharan, P. 2018. Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of The Total Environment 640-641: 696-703.

Li, J.; Ma, G.; Ma, L.; Bao, X.; Li, L.; Zhao, Q.; Wang, Y. 2018. Multivariate Analysis of Fruit Antioxidant Activities of Blackberry Treated with 1-Methylcyclopropene or Vacuum Pre-cooling. International Journal of Analytical Chemistry Article ID 2416461: 1–5.

Martínez, C.; Nieves, S.; Arévalo, N.; Verde, K.; Rivas, M.; Oranday, M.; Cárdenas, A.; Núñez, M.; Morales, M. 2011. Antocianinas y actividad anti radicales libres de rubus adenotrichus schltdl (zarzamora). Revista mexicana de ciencias farmacéuticas, México 42(4): 66-71.

Mesa, L.; Gozá, O.; Uranga, M.; Toledo, A.; Gálvez Y. 2018. Aplicación del Análisis de Componentes Principales en el proceso de fermentación de un anticuerpo monoclonal. Vaccimonitor. Cuba 27(1): 8-15.

Miller, N. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science 84(4): 407-412.

Ovaco, V.; Pineda, LL. 2011. Los residuos de cacao (Teobroma cacao L) como fuente alternativa de antioxidante. Tesis ing. Industrias Agropecuarias. Universidad Católica de Loja. Loja. Ecuador. 42 pp.

Peláez, P.: Guerra, S.; Contreras, D. 2016. Changes in physical and chemical characteristics of fermented cocoa (Theobroma cacao) beans with manual and semimechanized transfer, between fermentation boxes. Scientia Agropecuaria 07(02): 111–119.

Perea, J.; Cadena, T.; Herrera, J. 2009. El cacao y sus productos como fuente de antioxidantes: Efecto del procesamiento. Salud 41(2): 128-134.

Reglamento (UE). 2014. Reglamento (UE) No 488, que modifica el Reglamento (CE) no 1881/2006 por lo que respecta al contenido máximo de cadmio en los productos alimenticios. 5 pp.

Reglamento (UE). 2015. Reglamento (UE) 2015/1005 de la comisión, que modifica el Reglamento (CE) no 1881/2006 por lo que respecta al contenido máximo de plomo en determinados productos alimenticios. 5 pp.

Romero-Estévez, D.; Yánez-Jácome, G.S.; Simbaña-Farinango, K.; Navarrete, H., 2019. Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food Control 106: 106750.

Singleton, V.; Rossi, J. 1965. Colorimetry of total phenolics with phosphomolybdic. American Journal of Enology and Viticulture (16): 144-158.

Studziński, T.; Matras, J.; Grela, E.R.; Piedra, J. L.V.; Truchliński, J.; Tatara, M.R. 2006. Chapter 16 Minerals: functions, requirements, excessive intake and toxicity. Biology of Nutrition in Growing Animals. Poland. Pp. 467–509.

Varian, H. 1989. Analytical methods: Flame atomic absorption spectrometry. Publication N° 85-100009-00 Australia, Mulgrave, Victoria: Varian Australia Pty Ltd.

Zapata, S.; Tamayo, A.; Alberto, B. 2013. Efecto de la fermentación sobre la actividad antioxidante de diferentes clones de cacao colombiano. Revista cubana de planta medicinales 18(3): 391-404.

Received March 31, 2019.

Accepted September 8, 2019.

Corresponding author: pedro.pelaez@unas.edu.pe (P.P. Peláez).

Publicado

2019-12-26

Cómo citar

Tolentino, M. E., Camasca, P., & Peláez, P. P. (2019). Macro and microelements, lead, cadmium, functional compounds, antioxidant capacity in fresh, dry cocoa beans and cocoa paste. Scientia Agropecuaria, 10(4), 521-530. https://doi.org/10.17268/sci.agropecu.2019.04.09

Número

Sección

Artículos originales