Effect of exogenous proline on the production and partitioning of dry matter and on the organic carbon content at different stages of the tomato plant

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2026.010

Keywords:

Vegetable, Amino acid, Compatible osmolytes, Solanum lycopersicum L, Water limitation

Abstract

Water limitation is one of the most serious problems in tomato production, responsible for a significant reduction in productivity and fruit quality. In this context, the application of exogenous proline may be an alternative for plants to deal with possible water stress. The objective of this work was to evaluate the production, dry matter mass partition and organic carbon content of the tomato cultivar “Vivacy”, cultivated with doses of proline and irrigated every seven days. A randomized block design was used, with four replications and a 2 x 3 + 1 factorial arrangement. The factors consisted of 2 doses of proline (100 and 150 mg L-1), 3 application times (1, 3 and 6 days after irrigation) and a control without proline application. Data analysis showed a significant difference in the variables analyzed, revealing that the application of proline influenced the production and partition of dry matter mass of tomato plants. However, no significant difference was found in some variables, although the application of treatments showed superior results compared to the control. Proline sprayed at a dose of 100 mg L-1 increases the dry matter mass and organic carbon content in tomato plants during the fruiting and end-of-cycle phases, in addition to contributing to greater dry matter partitioning for the fruits.

References

Abdullah, M. A., Ridha, A., & Rusyid, S. (2021) Estimation of biomass potential, carbon stocks, and carbon sequestration of Trigona sp. honey bees feed. In: 2nd Biennial Conference of Tropical Biodiversity, IOP Conf. Series: Earth and Environmental Science 886. https://doi.org/10.1088/1755-1315/886/1/012072

Abreu, D. T. B., Oliveira, F. H. T., Queiroga, F. M., Costa, A. C., Carvalho, S. L., & Tavares, H. A. M. (2018) Accumulation of dry matter and macronutrients by the Caeté tomato under field conditions. Dyna, 85(207), 101-106. https://doi.org/10.15446/dyna.v85n207.72277

Aliche, E. B., Theeuwen, T. P. J. M., Oortwijn, M., Visser, R. G. F., & Linden, C. G. (2020) Carbon partitioning mechanisms in potato under drought stress. Plant Physiology and Biochemistry, 146, 211-219. https://doi.org/10.1016/j.plaphy.2019.11.019

Almeida, V. S., Silva, D. J. H., Gomes, C. N., Antonio, A. C., Moura, A. D., & Lima, A. L. R. (2015) Sistema Viçosa para o cultivo de tomateiro. Horticultura Brasileira, 33, 074-079. https://doi.org/10.1590/S0102-053620150000100012

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO.

Altuntas, C., Demiralay, M., Muslu, A. S., & Terzi, R. (2020) Proline-stimulated signaling primarily targets the chlorophyll degradation pathway and photosynthesis associated processes to cope with short-term water deficit in maize. Photosynthesis Research, 144, 35-48. https://doi.org/10.1007/s11120-020-00727-w

Alvarenga, M. A. R. (2013) Tomate produção em campo, em casa de vegetação e em hidroponia. 2. ed. UFLA.

Bezerra Neto, E., & Barreto, L. P. (2011) Análises Químicas e Bioquímicas em Plantas. UFRPE.

Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018) Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833-2849. https://doi.org/10.1007/s13197-018-3221-z

Cunha, J. G., Cavalcante, I. H. L., Silva, L. S., Silva, M. A., Sousa, K. A. O., & Paiva Neto, V. B. (2022) Algal extract and proline promote physiological changes in mango trees during shoot maturation. Revista Brasileira de Fruticultura, 44(3), e854. https://doi.org/10.1590/0100-29452022854

Dawood, M. G., Khater, M. A., & El-Awadi, M. E. (2021) Physiological role of osmoregulators proline and glycinebetaine in increasing salinity tolerance of Chickpea. Egyptian Journal of Chemistry, 64(12), 7637-7648. https://doi.org/10.21608/ejchem.2021.85725.4233

Embrapa. (2018) Sistema Brasileiro de Classificação de Solos. 5. ed. Embrapa.

Fara, S. J., Delazari, F. T., Gomes, S. R., Araújo, W. L., & Silva, D. J. H. (2019) Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Scientia Horticulturae, 255, 86-95. https://doi.org/10.1016/j.scienta.2019.05.025

Ferreira, E., Cavalcanti, P., & Nogueira, D. (2014) ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952-2958. https://doi.org/10.4236/am.2014.519280

Gao, Y., Zhang, J., Wang, C., Han, K., Hu, L., Niu, T., Yang, Y., Chang, Y., & Xie, J. (2023) Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants, 12(4), 928. https://doi.org/10.3390/plants12040928.

Geilfus, C. M., Zörb, C., Jones, J. J., Wimmer, M.A. & Schmöckel, S. M. (2024) Water for agriculture: more crop per drop. Plant Biology, 26, 499-507. https://doi.org/10.1111/plb.13652

Gruszecki, R., Stawiarz, A., & Walasek-Janusz, M. (2022) The effects of proline on the yield and essential oil content of Turnip-Rooted Parsley (Petroselinum crispum ssp. tuberosum). Agronomy, 12(8), e1941. https://doi.org/10.3390/agronomy12081941

IBGE (2024). Indicadores IBGE: Levantamento Sistemático da Produção Agrícola. Instituto Brasileiro de Geografia e Estatística.

Irviring, L. J. (2015) Carbon assimilation, biomass partitioning and productivity in grasses. Agriculture, 5(4), 1116-1134. https://doi.org/10.3390/agriculture5041116

Khalid, M., Rehman, H. M., Ahmad, S., Saleem, F., Nawaz, S., Ahmed, N., Uzair, M., Rana, I. A., Lam, H., Zaman, Q. U., & Atif, R. M. (2022) Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. International Journal of Molecular Sciences, 23(21), e12913. https://doi.org/10.3390/ijms232112913

Kuo, C., Tu, Y. K., Fang, S. L., Huang, Y. R., Chen, H. W., Yao, M. H., & Kuo, B. J. (2023) Early detection of drought stress in tomato from spectroscopic data: A novel convolutional neural network with feature selection. Chemometrics and Intelligent Laboratory Systems, 239, e104869. https://doi.org/10.1016/j.chemolab.2023.104869

Leite, R. S., Navarro, S. H., Nascimento, M. N., Potosme, N. M., Silva, A. L., & Santos, R. J. (2022) Proline and sodium nitroprusside increase the tolerance of Physalis peruviana L. plants to water deficit through chemical priming. Ciência e Agrotecnologia, 46, e004622. https://doi.org/10.1590/1413-7054202246004622

Liang, G., Liu, J., Zhang, J., & Guo, J. (2020) Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science, 145(1), 12-17. https://doi.org/10.21273/JASHS04725-19

Lima, G. S., Santos, J. B., Soares, L. A. A., Gheyi, H. R., Nobre, R. G., & Pereira, R. F. (2016) Irrigação com águas salinas e aplicação de prolina foliar em cultivo de pimentão ‘All Big’. Comunicata Scientiae, 7(4), 513-522. https://doi.org/10.14295/CS.v7i4.1671

Liu, Z., Lv, A., & Li, T. (2025). Intensified Drought Threatens Future Food Security in Major Food-Producing Countries. Atmosphere, 16(1), 34. https://doi.org/10.3390/atmos16010034

Mantovani, E. C., Delazari, F. T., Dias, L. E.; Assis, I. R., Vieira, G. H. S., & Landim, F. M. (2013) Yield and water use efficiency for two sweet potato cultivars depending on irrigation depths. Horticultura Brasileira, 31(4), 602-606. https://doi.org/10.1590/S0102-05362013000400015

Martinazzo, E. G., Perboni, A. T., Posso, D. A., Aumonde, T. Z., & Bacarin, M. A. (2015) Análise de crescimento e partição de assimilados em plantas de tomateiro cv. Micro-Tom submetidas ao nitrogênio e piraclostrobina. Semina: Ciências Agrárias, 36(5), 3001-3012. https://doi.org/10.5433/1679-0359.2015v36n5p3001

Ojewumi, A. W., Ayoola, S., Ope, A., & Iyanda, T. (2023) Proline as an osmolyte modulates changes in morphological and physiological attributes of Capsicum annuum L. under water stress. Annals of Science and Technology, 8(1), 51-58. https://doi.org/10.2478/ast-2023-0008

Prabha, V. V, & Deepak, M. T. (2025). Comprehensive review on the physiological adaptations of tomato (Solanum lycopersicum) to drought stress. Annual Research & Review in Biology, 40(5), 60–67. https://doi.org/10.9734/arrb/2025/v40i52240

Renzetti, M., Funck, D., & Trovato, M. (2025) Proline and ROS: A unified mechanism in plant development and stress response? Plants, 14(1), 2. https://doi.org/10.3390/plants14010002

Sarker, U., & Oba, S. (2018) Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186, 999-1016. https://doi.org/10.1007/s12010-018-2784-5

Semida, W. M., Abdelkhalik, A., Rady, M. O. A., Marey, R. A., & El-Mageed, T. A. A. (2020) Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272, 109580. https://doi.org/10.1016/j.scienta.2020.109580

Schmidt, D., Zamban, D. T., Prochnow, D., Caron, B. O., Souza, V. Q., Paula, G. M., & Cocco, C. (2017) Caracterização fenológica, filocrono e requerimento térmico de tomateiro italiano em dois ciclos de cultivo. Horticultura Brasileira, 35(1), 89-96. https://doi.org/10.1590/S0102-053620170114

Sharma, A., Wang, J., Xu, D., Tao, S., Chong, S., Yan, D., Li, Z., Yuan, H., & Zheng, B. (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of The Total Environment, 717, e136675. https://doi.org/10.1016/j.scitotenv.2020.136675

Silao, F. G. S., Jiang, T., Veress, B. B., Kühbacher, A., Ryman, K., Uwamohoro, N., Jenull, S., Nogueira, F., Ward, M., Lion, T., Urban, C. F., Rupp, S., Kuchler, K., Chen, C., Peuckert C., & Ljungdahl, P. O. (2023). Proline catabolism is a key factor facilitating Candida albicans pathogenicity. PLoS Pathogens, 19(11), e1011677. https://doi.org/10.1371/journal.ppat.1011677

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Artmed.

Tonhati, R., Mello, S. C., Momesso, P., & Pedroso, R. M. (2020) L-proline alleviates heat stress of tomato plants grown under protected environment. Scientia Horticulturae, 268, 109370. https://doi.org/10.1016/j.scienta.2020.109370

Zouari, M., Hassena, A. B., Trabelsi, L., Rouina, B. B., Decou, R., & Labrousse, P. (2019) Exogenous proline-mediated abiotic stress tolerance in plants: possible mechanisms. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., & Mäkelä, P. (Eds.) Osmoprotectant-mediated abiotic stress tolerance in plants. (pp. 99-121) Springer. https://doi.org/10.1007/978-3-030-27423-8_4

Downloads

Published

2025-11-10

How to Cite

de Oliveira, J. ., Corella, R. I. ., Nascimento, D. L. ., Barbosa, M. S. ., Silva, D. J. H. ., & Martinez, H. E. P. . (2025). Effect of exogenous proline on the production and partitioning of dry matter and on the organic carbon content at different stages of the tomato plant. Scientia Agropecuaria, 17(1), 141-150. https://doi.org/10.17268/sci.agropecu.2026.010

Issue

Section

Original Articles