Sapote gum as a new biopolymer suitable emulsion stabilizer: Grapeseed oil ultrasonic emulsification

Authors

  • Katherin Lloy Arce-Rios Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, SM, Perú. https://orcid.org/0000-0003-1933-9533
  • José Luis Pasquel-Reátegui Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, SM, Perú. https://orcid.org/0000-0001-6467-394X
  • Thony Arce-Saavedra Departamento Académico de Ciencia y Tecnología Agroindustrial, Facultad de Ciencias Agrarias, Universidad Nacional Autónoma de Chota (UNACH), Chota, Cajamarca, Perú. https://orcid.org/0000-0002-2300-9169
  • Eliana Marcela Vélez-Erazo Grupo de Investigación en Ingeniería y Tecnología Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín (UNSM), Tarapoto, SM, Perú. https://orcid.org/0000-0002-8632-5329

DOI:

https://doi.org/10.17268/sci.agropecu.2025.005

Keywords:

Central Composite Rotational Design, Capparis scabrida, Vitis labrusca, stable emulsion, Centred Face Design, ultrasound

Abstract

Sapote gum (SG) is a new biopolymer with promissory functional properties. This study aimed to determine if SG is a suitable emulsifier for obtaining stable grape seed oil (GSO) emulsions. In the first stage, coarse emulsion concentrations of SG and grapeseed oil - GSO were evaluated, applying the Central Composite Rotational Design (0.59% to 3.41% of SG and 12.93% to 27.07% GSO). For the second stage, using a Centered Face Design – CFD, the resulting emulsion was sonicated at 90, 270, and 450 Watts at 5, 10, and 15 min. Finally, a validation was made. Emulsions were evaluated through microstructure, droplet size, kinetic stability, heat stress, and rheology. Micrographs of the first-stage emulsions showed droplets up to 3.8 μm diameter and a creaming index between 0.00% and 28.39% after 24 h. Optimization indicates that the higher the concentration of gum (3.5%) and GSO (25%), the more kinetically stable emulsions are produced. Ultrasonic emulsions showed no significant difference in droplet size and kinetic stability before 14 days of rest. Ultrasonic validation was made at 450 W for 6 min, resulting in emulsions stable for 20 days and with rheological characteristics interesting for food or cosmetic industries.

References

Abreu-Naranjo, R., Ramirez-Huila, W. N., Reyes Mera, J. J., Banguera, D. V., & León-Camacho, M. (2020). Physico-chemical characterisation of Capparis scabrida seed oil and pulp, a potential source of eicosapentaenoic acid. Food Bioscience, 36, 100624. https://doi.org/10.1016/J.FBIO.2020.100624

Dabetic, N. M., Todorovic, V. M., Djuricic, I. D., Stankovic, J. A. A., Basic, Z. N., Vujovic, D. S., & Sobajic, S. S. (2020). Grape Seed Oil Characterization: A Novel Approach for Oil Quality Assessment. European Journal of Lipid Science and Technology, 1900447, 1–10. https://doi.org/10.1002/ejlt.201900447

Duba, K. S., & Fiori, L. (2015). Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. The Journal of Supercritical Fluids, 98, 33–43. https://doi.org/10.1016/J.SUPFLU.2014.12.021

Fernandes, L., Casal, S., Cruz, R., Pereira, J. A., & Ramalhosa, E. (2013). Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Research International, 50(1), 161–166. https://doi.org/10.1016/j.foodres.2012.09.039

Francisco, C. R. L., Santos, T. P., & Cunha, R. L. (2023). Nano and micro lupin protein-grape seed extract conjugates stabilizing oil-in-water emulsions. Food Hydrocolloids, 135, 108117. https://doi.org/10.1016/J.FOODHYD.2022.108117

Gamboa-Alarcón, P. W., Enriquez-Castillo, D. F., Suyón-Martínez, J. A., & Rodríguez-Paúcar, G. N. (2023). Comportamiento reológico de la pulpa de mango (Mangifera indica L.) liofilizada con encapsulantes. Revista Agrotecnológica Amazónica, 3(1), e436. https://doi.org/10.51252/raa.v3i1.436

Gonzaga, A., Rimaycuna, J., Cruz, G. J. F., Bravo, N., Gómez, M. M., Solis, J. L., & Santiago, J. (2019). Influence of natural plasti-cizers derived from forestry biomass on shrimp husk chitosan films. Journal of Physics: Conference Series, 1173(1). https://doi.org/10.1088/1742-6596/1173/1/012006

Górnaś, P., Rudzińska, M., Grygier, A., & Lācis, G. (2018). Diversity of oil yield, fatty acids, tocopherols, tocotrienols, and sterols in the seeds of 19 interspecific grapes crosses. Journal of the Science of Food and Agriculture, 99(5), 2078–2087. https://doi.org/10.1002/JSFA.9400

Hazar, H., & Sevinc, H. (2023). Investigation of exhaust emissions and performance of a diesel engine fueled with preheated raw grape seed oil/propanol blends. Chemical Engineering and Processing - Process Intensification, 188, 109378. https://doi.org/10.1016/J.CEP.2023.109378

Herz Castro, K. B. (2007). Análisis físico-químico de la goma exudada de la especie sapote (Capparis scabrida H.B.K.), proveniente de los bosques secos de Lambayeque. In Universidad Nacional Agraria La Molina. http://repositorio.lamolina.edu.pe/handle/20.500.12996/403

Kelmer, F., & Costa, F. F. (2024). Innovations and stability challenges in food emulsions. Sustainable Food Technology. https://doi.org/10.1039/D4FB00201F

Khah, M. D., Ghanbarzadeh, B., Roufegarinejad Nezhad, L., & Ostadrahimi, A. (2021). Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. International Journal of Biological Macromolecules, 171, 262–274. https://doi.org/10.1016/J.IJBIOMAC.2021.01.020

Li, J., Wang, S., Wang, H., Cao, W., Lin, H., et al. (2023). Effect of ultrasonic power on the stability of low-molecular-weight oyster peptides functional-nutrition W1/O/W2 double emulsion. Ultrasonics Sonochemistry, 92, 106282. https://doi.org/10.1016/j.ultsonch.2022.106282

Mauro, M., Pinto, P., Settanni, L., Puccio, V., Vazzana, M., Hornsby, B. L., et al. (2022). Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. Sustainability, 14(9), 5410. https://doi.org/10.3390/SU14095410

Medeiros, A. M., Vélez-Erazo, E. M., Grossi, G., Furtado, G. D. F., Vidotto, D. C., Tavares, G. M., & Hubinger, M. D. (2022). High internal phase emulsions stabilized by the lentil protein isolate (Lens culinaris). Colloids and Surfaces A : Physicochemical and Engineering Aspects, 653(June), 129993. https://doi.org/10.1016/j.colsurfa.2022.129993

Moscol Ortiz, J. A. (2018). Caractetización física-química para determinación del rendimiento y calidad de la goma exudada de la especie forestal sapote Capparis scabrida H.B.K en el área de conservación regional angostura faical. Universidad Nacional de Tumbes.

Mutlu, N. (2023). Effects of grape seed oil nanoemulsion on physicochemical and antibacterial properties of gelatin‑sodium alginate film blends. International Journal of Biological Macromolecules, 237, 124207. https://doi.org/10.1016/J.IJBIOMAC.2023.124207

OIV. (2024). State of the world vine and wine sector in 2023.

Rodríguez-Rodríguez, E. F., Bussmann, R. W., Jackeline, S., Alfaro, A., & López, E. (2007). Capparis scabrida (Capparaceae) una especie del Perú y Ecuador que necesita planes de conservación urgente Capparis scabrida (Capparaceae) a species from Peru and Ecuador in urgent. https://www.researchgate.net/publication/228108008

Saout, C., Quéré, C., Donval, A., Paulet, Y. M., & Samain, J. F. (1999). An experimental study of the combined effects of temperature and photoperiod on reproductive physiology of Pecten maximus from the Bay of Brest (France). Aquaculture, 172(3–4), 301–314. https://doi.org/10.1016/S0044-8486(98)00406-2

Sarabandi, K., Akbarbaglu, Z., Mazloomi, N., Gharehbeglou, P., Peighambardoust, S. H., & Jafari, S. M. (2023). Structural modification of poppy-pollen protein as a natural antioxidant, emulsifier and carrier in spray-drying of O/W-emulsion: Physicochemical and oxidative stabilization. International Journal of Biological Macromolecules, 250, 126260. https://doi.org/10.1016/j.ijbiomac.2023.126260

Sarabandi, K., Tamjidi, F., Akbarbaglu, Z., Samborska, K., Gharehbeglou, P., Kharazmi, M. S., & Jafari, S. M. (2022). Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics, 14(11), 2434. https://doi.org/10.3390/PHARMACEUTICS14112434/S1

Sepeidnameh, M., Fazlara, A., Hosseini, S. M. H., et al. (2024) Encapsulation of grape seed oil in oil-in-water emulsion using multilayer technology: Investigation of physical stability, physicochemical and oxidative properties of emulsions under the influence of the number of layers. Current Research in Food Science 8(February). 100771. https://doi.org/10.1016/j.crfs.2024.100771

Silva, E. K., Azevedo, V. M., Cunha, R. L., Hubinger, M. D., & Meireles, M. A. A. (2015). Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocolloids, 56, 71–83. https://doi.org/10.1016/j.foodhyd.2015.12.006

Silva, M., Zisu, B., & Chandrapala, J. (2019). Interfacial and emulsification properties of sono-emulsified grape seed oil emulsions stabilized with milk proteins. Food Chemistry, 309, 125758. https://doi.org/10.1016/j.foodchem.2019.125758

Silva, M., Zisu, B., & Chandrapala, J. (2020a). Stability of oil–water primary emulsions stabilised with varying levels of casein and whey proteins affected by high-intensity ultrasound. International Journal of Food Science and Technology, 56(2), 897–908. https://doi.org/10.1111/ijfs.14737

Silva, M., Zisu, B., & Chandrapala, J. (2020b) Interfacial and emulsification properties of sono-emulsified grape seed oil emulsions stabilized with milk proteins. Food Chemistry, 309(2019). 125758. https://doi.org/10.1016/j.foodchem.2019.125758

Steffe, J. F. (1996). Rheological Methods in food process engineering (F. Press, Ed.; 2nd ed.). Freeman Press. https://doi.org/10.1016/0260-8774(94)90090-6

Surini, S., Azzahrah, F. U., & Ramadon, D. (2018). Microencapsulation of grape seed oil (Vitis vinifera L.) with gum arabic as a coating polymer by crosslinking emulsification method. International Journal of Applied Pharmaceutics, 10(6), 194–198. https://doi.org/10.22159/IJAP.2018V10I6.24093

Taha, A., Ahmed, E., Ismaiel, A., Ashokkumar, M., Xu, X., Pan, S., & Hu, H. (2020). Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science and Technology, 105, 363–377. https://doi.org/10.1016/j.tifs.2020.09.024

Vélez-Erazo, E. M., Bosqui, K., Rabelo, R. S., Kurozawa, L. E., & Hubinger, M. D. (2020). High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids, 105. https://doi.org/10.1016/j.foodhyd.2020.105775

Vélez-Erazo, E. M., Carbajal-Sandoval, M. S., Sanchez-Pizarro, A. L., Peña, F., Martínez, P., & Velezmoro, C. (2022). Peruvian Biopolymers (Sapote Gum, Tunta, and Potato Starches) as Suitable Coating Material to Extend the Shelf Life of Bananas. Food and Bioprocess Technology, 15(11), 2562–2572. https://doi.org/10.1007/s11947-022-02902-4

Vélez-Erazo, E. M., Consoli, L., & Hubinger, M. D. (2018). Mono and double-layer emulsions of chia oil produced with ultrasound mediation. Food and Bioproducts Processing, 112, 108–118. https://doi.org/10.1016/j.fbp.2018.09.007

Wu, J., Guan, X., Wang, C., Ngai, T., & Lin, W. (2022). pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane. Journal of Colloid and Interface Science, 610, 994–1004. https://doi.org/10.1016/J.JCIS.2021.11.156

Yang, C., Shang, K., Lin, C., Wang, C., Shi, X., Wang, H., & Li, H. (2021). Processing technologies, phytochemical constituents, and biological activities of grape seed oil (GSO): A review. Trends in Food Science & Technology, 116, 1074–1083. https://doi.org/10.1016/J.TIFS.2021.09.011

Yuan, Y., Wan, Z., Yin, S., & Yang, X. (2013). Stability and antimicrobial property of soy protein/chitosan mixed emulsion at acidic condition. Food & Function, 4(9), 1394. https://doi.org/10.1039/c3fo60139k

Zhou, L., Zhang, J., Xing, L., & Zhang, W. (2021). Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends in Food Science and Technology, 110(1), 493–512. https://doi.org/10.1016/j.tifs.2021.02.008

Zhuang, H., Li, X., Wu, S., Wang, B., & Yan, H. (2023). Fabrication of grape seed proanthocyanidin-loaded W/O/W emulsion gels stabilized by polyglycerol polyricinoleate and whey protein isolate with konjac glucomannan: Structure, stability, and in vitro digestion. Food Chemistry, 418, 135975. https://doi.org/10.1016/j.foodchem.2023.135975

Downloads

Published

2025-01-14

How to Cite

Arce-Rios, K. L., Pasquel-Reátegui, J. L., Arce-Saavedra, T., & Vélez-Erazo, E. M. (2025). Sapote gum as a new biopolymer suitable emulsion stabilizer: Grapeseed oil ultrasonic emulsification. Scientia Agropecuaria, 16(1), 51-59. https://doi.org/10.17268/sci.agropecu.2025.005

Issue

Section

Original Articles

Most read articles by the same author(s)