A computational analysis revealed BES1 transcription factor and β-amylase as crosstalk elements in Upland cotton species (Gossypium sp.)

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2024.033

Keywords:

BAM, bioinformatics, BZR1, crosstalk, gene expression, transcription factor

Abstract

Cotton is a resilient and multipurpose crop, meeting major of the world’s textile needs while also yielding byproducts like edible oil and animal feed. Starch plays a crucial role in cotton fabric production. It enhances fabric strength by forming a protective film around cotton fibers, making them more resistant to wear and tear. BES1 (brassinosteroid insensitive 1) is a key regulator in brassinosteroid signaling. It controls thousands of target genes involved in development processes. Interestingly, two β-amylase proteins (BAM7 and BAM8) are part of the BES1 family, despite their primary function as β-amylases. β-Amylase (BAM) and BES1 are two gene families with functional and regulatory roles in controlling shoot growth and development by mediating brassinosteroid effects. They share similar domains and participate in various biological processes, tolerance and responses to stresses like salt and drought. In a computational analysis comparing Arabidopsis and Gossypium species, BAM and BES1 were characterized. BES1 genes were grouped into four clusters based on the comparison of the two species. Two clusters corresponded to BAM7 and BAM8, while the other two clusters were associated with BES1. The conserved nucleotide domain sequence is GCTGGATGG. Short tandem repeats include TG and TTG, which can serve as molecular markers. BES1 is specifically linked to cellulose and fiber production and holds promise as a candidate for plant selection and breeding in Gossypium (cotton).

References

Ahammed, G. J., Li, X., Liu, A., & Chen, S. (2020). Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regulation, 39 (4), 1451–1464. https://doi.org/10.1007/S00344-020-10098-0

Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings. International Conference on Intelligent Systems for Molecular Biology, 2, 28–36.

Campos, M. L., de Almeida, M., Rossi, M. L., Martinelli, A. P., Litholdo Junior, C. G., et al. (2009). Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 60(15), 4347–4361. https://doi.org/10.1093/jxb/erp270

Cao, X., Wei, Y., Shen, B., Liu, L., & Mao, J. (2024). Interaction of the transcription factors BES1/BZR1 in plant growth and stress response. International Journal of Molecular Sciences, 25(13), 6836. https://doi.org/10.3390/IJMS25136836

Gruszka, D., Srivastava, A. K., Yin, Y., & Kono, A. (2020). Updates on BES1/BZR1 regulatory networks coordinating plant growth and stress responses. Front. Plant Sci, 11, 617162. https://doi.org/10.3389/fpls.2020.617162

Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution, 33(6), 1635–1638. https://doi.org/10.1093/molbev/msw046

Jazayeri, S. M., Pooralinaghi, M., Villamar-Torres, R. O., & Cruzatty, L. C. G. (2018). An in silico comparative genomic report on transcription factors in three Arabidopsis species. Ciencia y Tecnología, 11(1), 1–9. https://doi.org/10.18779/cyt.v11i1.185

Jazayeri, S. M., Villamar-Torres, R. O., Zambrano-Vega, C., Cruzatty, L. C. G., Oviedo-Bayas, B., et al. (2020). Transcription factors and molecular markers revealed asymmetric contributions between allotetraploid Upland cotton and its two diploid ancestors. Bragantia, 79(1), 30-46. https://doi.org/10.1590/1678-4499.20190161

Jazayeri, S.M., García Cruzatty, L. C., Villamar-Torres, R., Cruzatty, L. C. G., & Villamar-Torres, R. (2019). Genomic comparison among three arabidopsis species revealed heavy metal responsive genes. Journal of Animal and Plant Sciences, 29(2).

John, M. E., & Crow, L. J. (1992). Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5769–73.

Kaplan, F., & Guy, C. L. (2004). beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiology, 135(3), 1674–84. https://doi.org/10.1104/pp.104.040808

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

Letunic, I., & Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44(W1), W242–W245. https://doi.org/10.1093/nar/gkw290

Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 33(5), 524–530. https://doi.org/10.1038/nbt.3208

Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., et al. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 46(6), 567–572. https://doi.org/10.1038/ng.2987

MacGregor, E. A., Janecek, S., & Svensson, B. (2001). Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochimica et Biophysica Acta, 1546(1), 1–20.

Manghwar, H., Hussain, A., Ali, Q., & Liu, F. (2022). Brassinosteroids (BRs) role in plant development and coping with different stresses. International Journal of Molecular Sciences, 23(3), 1012. https://doi.org/10.3390/IJMS23031012

Nolan, T., Chen, J., & Yin, Y. (2017). Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. The Biochemical Journal, 474(16), 2641–2661. https://doi.org/10.1042/BCJ20160633

Rathore, K. S., Campbell, L. M., Sherwood, S., & Nunes, E. (2015). Cotton (Gossypium hirsutum L.). Methods in molecular biology (Clifton, N.J.), 1224, 11–23. https://doi.org/10.1007/978-1-4939-1658-0_2

Reinhold, H., Soyk, S., Simková, K., Hostettler, C., Marafino, J., et al. (2011). β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. The Plant Cell, 23(4), 1391–403. https://doi.org/10.1105/tpc.110.081950

Ryu, H., Cho, H., Bae, W., & Hwang, I. (2014). Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications, 5, 4138. https://doi.org/10.1038/ncomms5138

Shi, H., Li, X., Lv, M., & Li, J. (2022). BES1/BZR1 family transcription factors regulate plant development via brassinosteroid-dependent and independent pathways. International Journal of Molecular Sciences, 23(17), 10149. https://doi.org/10.3390/IJMS231710149/S1

Song, X., Ma, X., Li, C., Hu, J., Yang, Q., et al. (2018). Comprehensive analyses of the BES1 gene family in Brassica napus and examination of their evolutionary pattern in representative species. BMC Genomics, 19(1), 1–15. https://doi.org/10.1186/S12864-018-4744-4

Todaka, D., Matsushima, H., & Morohashi, Y. (2000). Water stress enhances beta-amylase activity in cucumber cotyledons. Journal of Experimental Botany, 51(345), 739–745.

Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., et al. (2012). The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 44(10), 1098–1103. https://doi.org/10.1038/ng.2371

Wang, Y., Coleman-Derr, D., Chen, G., & Gu, Y. Q. (2015). OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 43(W1), W78-W84. https://doi.org/10.1093/nar/gkv487

Wu, P., Song, X., Wang, Z., Duan, W., Hu, R., et al. (2016). Genome-wide analysis of the BES1 transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Growth Regulation, 80(3), 291–301. https://doi.org/10.1007/s10725-016-0166-y

Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany, 62(13), 4495–4506. https://doi.org/10.1093/jxb/err164

Yang, T., Li, H., Li, L., Wei, W., Huang, Y., Xiong, F., & Wei, M. (2023). Genome-wide characterization and expression analysis of α-amylase and β-amylase genes underlying drought tolerance in cassava. BMC Genomics, 24(1), 1–14. https://doi.org/10.1186/S12864-023-09282-9

Yasir, T. A., & Wasaya, A. (2021). Brassinosteroids Signaling pathways in plant defense and adaptation to stress. Plant Growth Regulators: Signalling under Stress Conditions, 197–206. https://doi.org/10.1007/978-3-030-61153-8_9

Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120(2), 249–259. https://doi.org/10.1016/j.cell.2004.11.044

Downloads

Published

2024-09-02

How to Cite

Villamar-Torres, R. O. ., Mestanza Uquillas, C. A. ., Chévez-Vera, H. D. ., Heredia-Pinos, M. R. ., Robin Viot, C. ., & Mehdi Jazayeri, S. . (2024). A computational analysis revealed BES1 transcription factor and β-amylase as crosstalk elements in Upland cotton species (Gossypium sp.). Scientia Agropecuaria, 15(3), 449-460. https://doi.org/10.17268/sci.agropecu.2024.033

Issue

Section

Original Articles