Extraction of bioactive compounds from Peruvian purple corn cob (Zea Mays L.) by dynamic high pressure

Authors

  • Jhoseline Stayce Guillén Sánchez Faculty of Food Engineering, Department of Food Technology, State University of Campinas, UNICAMP, P.O.Box. 6121, 13083-862, Campinas.
  • Cinthia Baú Betim Cazarin Faculty of Food Engineering, Food and Nutrition Department, University of Campinas, UNICAMP, 13083-862, Campinas
  • Miriam Regina Canesin Faculty of Food Engineering, Food and Nutrition Department, University of Campinas, UNICAMP, 13083-862, Campinas
  • Felix Reyes Reyes Faculty of Food Engineering, Department of Food Science, University of Campinas, UNICAMP, Rua Monteiro Lobato, 80, 13083-862, Campinas
  • Amadeu Hoshi Iglesias ApexScience Laboratory, Marechal Rondon Avenue, 2148, Jd. Chapadão, 13063-001, Campinas
  • Marcelo Cristianini Faculty of Food Engineering, Department of Food Technology, State University of Campinas, UNICAMP, P.O.Box. 6121, 13083-862, Campinas

DOI:

https://doi.org/10.17268/sci.agropecu.2023.032

Keywords:

Purple corn cob, Dynamic high pressure, Bioactive compounds, Antioxidant activity, Liquid chromatography

Abstract

The objective of this research was to evaluate the effects of dynamic high pressure at different processing temperatures, on the extraction of bioactive compounds from Peruvian purple corn cob. The purple corn cobs were ground and sieved to then be mixed with an acidified 20% ethanol-water solution (pH 2) in a 1:30 (w/v) ratio. The hydroalcoholic extracts were subjected to maceration and high dynamic pressure processes varying temperature (25 °C to 60 °C) and pressure (0.01 MPa - 60 MPa), and the bioactive compounds content and antioxidant activity were evaluated. The results showed that dynamic high pressure at 60 MPa / 45 °C was capable of obtaining extracts with bioactive compound contents and high antioxidant activity corresponding to those obtained using the conventional process of 2.5 hours / 65 °C. Seven different anthocyanins were identified by liquid chromatography in the extracts obtained by the dynamic high pressure, mainly cyanidin-3-glucoside, pelargonidin-3-glucoside and peonidin-3-glucoside, and their respective malonyl derivatives. The dynamic high pressure increased the extraction of anthocyanins by more than 108% and obtained them in one step, thus appearing as a new alternative, eco-friendly method for the extraction of bioactive compounds from plant tissues.

References

Aguilar, Y. (2022). Optimization of baking time and the formulation using Cushuro and purple corn crow meal in cookies. Tesis, Universidad Nacional de Trujillo, Trujillo.

Andrés, V., Villanueva, M., & Tenorio, M. (2016). The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chemistry, 192(1), 328-335. https://doi.org/10.1016/j.foodchem.2015.07.031

AOAC. Horwitz, W. (Ed). (2005). Official methods of Analysis of AOAC International, 18th edition, AOAC International, Maryland, USA.

Aoki, H., Kuze, N., & Kato, Y. (2002). Anthocyanins isolated from purple corn (Zea Mays L.). Foods and Food Ingredients Journal of Japan, 199, 41–45.

Benzie, F., & Strain, J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘‘Antioxidant Power’’: The FRAP Assay. Analytical Biochemistry, 239, 70-76.

Bligh, E., & Dyer, W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.

Clifford, M. (2000). Review. Anthocyanins – nature, occurrence and dietary burden. Nutritional Enhancement of Plant‐based Food in European Trade, 80, 1063-1072.

Eslami, E., Carpentieri, S., Pataro, G., & Ferrari, G. (2023). Compre-hensive overview of tomato processing by-product valoriza-tion by conventional methods versus emerging technologies. Foods, 12(166). https://doi.org/https://doi.org/10.3390/

González, M., Lobo, G., & Gonzalez, M. (2010). The effect of extraction temperature, time and number of steps on the antioxidant capacity of methanolic banana peel extracts. Separation and Purification Technology, 71, 347–355.

Halahlah, A., Piironen, V., Mikkonen, K., & Ho, T. (2023). Wood Hemicelluloses as Innovative Wall Materials for Spray-Dried Microencapsulation of Berry Juice: Part 1—Effect of Homogenization Techniques on their Feed Solution Properties. Food and Bioprocess Technology, 16(4), 909-929.

He, X., Yue, J., Qiu, F., Tang, Y., Su, J., Zhao, Y., . . . Sun, J. (2022). Effect of Dynamic High-Pressure Microfluidization Assisted Extraction on the Structure and Activity of Polysaccharides from Polygonatum kingianum Coll. et Hemsl. Food Science, 43(19), 95 - 101.

Hee Yeon, K., Ki Yeon, L., Minju, K., Minji, H., Ponnuvel, D., & Songmun, K. (2023). A Review of the Biological Properties of Purple Corn. Scientia Pharmaceutica, 91(1), 6. https://doi.org/https://doi.org/10.3390/scipharm91010006

IAL - Instituto Adolfo Lutz (2008). Procedimentos e determinações gerais. In: Zenebon O, Pascuet N, Tiglea, P (eds.), Métodos Físico-Químicos para análise de alimentos, pp.83-158.

Itthisoponkul, T., Naknan, P., Prompun, S., & Kasemwong, K. (2018). Evaluation of high-pressure treatment for improvement of physicochemical and functional qualities in purple corncobs. International Food Research Journal, 25(1), 246-253.

Jurić, S., Ferrari, G., Velikov, K., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 262, 170-180.

Kaneiwa, M., Augusto, P., & Cristianini, M. (2013). Effect of high-pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170-179.

Karacam, C. H., Sahin, S., & Oztop, M. H. (2015). Effect of high-pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT - Food Science and Technology, 64, 932-937. http://dx.doi.org/10.1016/j.lwt.2015.06.064

Lima, M., & Rosenthal, A. (2022). High pressure homogenization applied to fruit juices: Effects on microbial inactivation and on maintenance of bioactive components. Food Science and Technology International. https://doi.org/10.1177/10820132221124196

Liu, J., Bi, J., Liu, X., Liu, D., Verkerk, R., Dekker, M., . . . Wu, X. (2022). Modelling and optimization of high-pressure homogenization of not-from-concentrate juice: Achieving better juice quality using sustainable production. Food Chemistry, 370, 131058. https://doi.org/10.1016/j.foodchem.2021.131058

Montes, C., Vicario, I., Raymundo, M., Fett, R., & Heredia, F. (2005). Application of tristimulus colourimetry to optimize the extraction of anthocyanin from Jaboticaba (Myricia Jaboticaba Berg.). Food Research International, 38, 983–988.

Monroy, Y., Rodriguez, R., Sartoratto, A., & Cabral, F. (2016). Extraction of bioactive compounds from cob and pericarp of purple corn (Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO2, ethanol, and water as solvents. The Journal of supercritical fluids, 118, 10-19.

Ou, B., Chang, T., Huang, D., & Prior, R. (2013). Determination of total antioxidante capacity by oxigen radical absorvace capacity (ORAC) using fluorescein as the fluorescence probe: First action 2012.23. Food composition and additives, 96(6), 1372-1376. Doi: 10.5740/jaoacint.13-175

Padrón, C., Padrón, G., Montes, A., & Oropeza, R. (2012). Determinación del color en epicarpio de tomates (Lycopersicum esculentum Mill.) con sistema de visión computarizada durante la maduración. Agronomía Costarricense, 36(1), 97-111.

Pascual-Teresa, S., Santos-Buelga, C., & Rivas-Gonzalo, J. (2002). LC-MS Analysis of anthocyanins from purple corn cob. Journal Science Food Agriculture, 82, 1003-1006.

Pirozzi, A., Ferrari, G., & Donsì, F. (2022). Cellulose Isolation from Tomato Pomace Pretreated by. Foods, 11(266). https://doi.org/https://doi.org/10.3390/foods11030266

Rafael, E., & Castro, D. (2023). Extracción y cuantificación de Antocianinas de maíz morado (Zea Mays l.) utilizando dos solventes a diferentes temperaturas y tiempos de extracción. Revista Latinoamericana de Difusión Científica, 5(8), 47-80.

Rossi, E., Moroni, F., Badin, E., Massolo, F., Rodoni, L., Vicente, A., & Lespinard, A. (2017). Estudio cinético de la degradación térmica de antocianinas en pulpas y jugos de frambuesa. IX Jornada de biología y tecnología poscosecha. Libro I Congreso Argentino de Biología y Tecnología Poscosecha. IX Jornadas Argentinas de Biología y Tecnología Poscosecha. Paraná: Universidad Nacional de Entre Ríos. UNER.

Sauceda-Galvez, J., Codina-Torrella, I., Martinez-Garcia, M., Hernandez, M., Gervilla, R., & Roig-Sagues, A. (2021). Combined effects of ultra-high pressure homogenization and short-wave ultraviolet radiation on the properties of cloudy apple juice. LWT, 136(110286). https://doi.org/10.1016/j.lwt.2020.110286

Saikaew, K., Lertrat, K., Meenune, M., & Tangwongchai, R. (2018). Effect of high-pressure processing on colour, phytochemical contents and antioxidant activities of purple waxy corn (Zea mays L. var. ceratina) kernels. Food Chemistry, 243, 328–337. http://dx.doi.org/10.1016/j.foodchem.2017.09.136

Singleton, V., & Rossi, J. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Strack, D., & Wray, V. (1989) Anthocyanins. In: Harbone H (ed). Methods in Plant Biochemistry, Plant Phenolics. Academic Press, New York, pp. 325-356.

Szczepańska, J., Skąpska, S., Połaska, M., & Marszałek, K. (2022). High pressure homogenization with a cooling circulating system: The effect on physiochemical and rheological properties, enzymes, and carotenoid profile of carrot juice. Food Chemistry, 370, 131023. https://doi.org/10.1016/j.foodchem.2021.131023

Tonon, R, Brabet, C., & Hubinger, M. (2009). Influência da temperatura do ar de secagem e da concentração de agente carreador sobre as propriedades fisioquímicas do suco de açaí em pó. Ciência e Tecnología de alimentos, 29(2), 444-450.

Wang, B., Huang, Q., Venkitasamy, C., Chai, H., Gao, H., Cheng, N., Cao, W., Lv, X., & Pan, Z. (2016). Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT - Food Science and Technology, 66, 56-62. https://doi.org/10.1016/j.lwt.2015.10.005.

Yang, S., Chen, Z., Zhai, W., Piao, X., & Piao, X. (2009). Extraction and identification of anthocyanin from purple corn (Zea mays L.). Food Science & Technology, 44(12), 2485-2592.

Zapata, I., Sepúlveda-Valencia, U, & Rojano, B. (2015). Effect of Storage Time on the Physicochemical, Probiotic and Antioxidant Properties of Yogurt Flavored with Colombian Berry (Vaccinium meridionale Sw). Información tecnológica, 26(2), 17-28. https://dx.doi.org/10.4067/S0718-07642015000200004

Zhang, C., Song, J., Liu, Y., Geng, N., Ma, K., Wang, L., & Li, Y. (2023). Optimization of Dynamic High Pressure Microfluidization-Assisted Extraction of Burdock Root Polysaccharide and Its in Vitro Antioxidant Activity. Science and Technology of Food Industry, 44(12), 260 - 267.

Zhao, Y., Zhou, H., Huang, Z., & Zhao, R. (2020). Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocolloids. doi:10.1016/j.foodhyd.2019.105543.

Downloads

Published

2023-09-18

How to Cite

Guillén Sánchez, J. S. ., Betim Cazarin, C. B. ., Regina Canesin, M., Reyes Reyes, F., Hoshi Iglesias, A. ., & Cristianini, M. (2023). Extraction of bioactive compounds from Peruvian purple corn cob (Zea Mays L.) by dynamic high pressure. Scientia Agropecuaria, 14(3), 367-373. https://doi.org/10.17268/sci.agropecu.2023.032

Issue

Section

Original Articles