Effect of the conditioning and ultrasound-microwave sequential technique on the yield, chemical and functional properties of the essential oils and hydrolats extracted from the leaves of Tagetes elliptica Smith

Authors

  • Ruben Torre Alvarez Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Ap. 12-056, Lima
  • Diana Nolazco Cama Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Ap. 12-056, Lima
  • Lena Tellez Monzón Universidad Nacional Agraria la Molina

DOI:

https://doi.org/10.17268/sci.agropecu.2022.028

Keywords:

chincho, hydrosols, antioxidants, polyphenols, phenolics

Abstract

Thermal regulation and ultrasound affect the physical, chemical, and antioxidant properties of essential oils and hydrosols extracted by microwaves from the leaves of Tagetes elliptica S. (chincho). The leaves were conditioned by dehydration or freezing, then pre-treated with ultrasound for 15 or 30 minutes at 40 Hz to finally obtain the essential oil (AECH) and hydrolat (HCH) through microwave extraction (500 W and 30 minutes). Yields, phenolic content, antioxidant capacity, leaf structure by optical microscopy, and chemical composition by gas chromatography and mass spectrometry (GC-MS) were evaluated. The conditioning of the leaves by freezing and sonication for 30 minutes obtained the best performance, 8.86±0.1% and 67.40 ± 4.8%, phenolic content of 39.4±0.1 mg EAG/mL and 346.2 ± 13.6 mg EAG/mL, and antioxidant capacity of 35.7 μmol EqT/mg and 0.25 μmol EqT/mg equivalent, for AECH and HCH, respectively in every case. Structural damage of the leaves was observed due to the effect of the conditioning-ultrasound-microwave treatments, achieving a more significant release of bioactive compounds. The main compounds of the essential oil were tagetenones (49.2%), followed by cis-miroxide (14.5%), dihydrotagetone (13.9%), tagetone (9.8%) and ocimene (2.4%); the main compounds in the hydrolate were cis-myroxide (44.66%), followed by cis- tagetone (23.84%), trans-tagetone (12.24%), linalool oxide (5.48%) and dihydrotagetone (4.04%). The significant contribution of the present study is the extraction techniques and chemical profile of tagetes elliptica extracts.

References

Abbasi, H., Sharifzadeh, S., & Karimi, S. (2022). Comparison of essential oil from Ocimum Basilicum obtained via sequential ultrasound-microwave extraction with microwave method. Iranian Journal of Biosystems Engineering, 53(1), 25-40.

Abd Aziz, N. A., Hasham, R., Sarmidi, M. R., Suhaimi, S. H., & Idris, M. K. H. (2021). A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. In Saudi Pharmaceutical Journal, 29(2),143-165.

Abdoul-Latif, F. M., Elmi, A., Merito, A., Nour, M., Risler, A., Ainane, A., Bignon, J., & Ainane, T. (2022). Essential oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical composition, antibacterial activity and cytotoxic activity against various human cancer cell lines. Int. J. Plant Biol., 13, 315-329.

Alva, R. R., Díaz, C. M., Rodriguez, J. J., Gómez, M., & Vilela, Z. K. (2018). Gastronomía de autor con uso de Tagetes elliptica “maría sacha” y Juglans neotropica “nogal” como especias locales para diversificar la oferta turística de la ciudad de Chachapoyas, 2016. Revista Científica UNTRM: Ciencias Sociales y Humanidades, 1(1), 14.

Aparco, R. H., Laime, M. D. C. D., & Tadeo, F. T. (2022). Metabolitos bioactivos y actividad antioxidante in vitro del aceite esencial extraído de dos especies del género Tagetes. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(3), 726-739.

Arora, R. (2018). Mechanism of freeze-thaw injury and recovery: a cool retrospective and warming up to new ideas. Plant Science, 270, 301-313.

Benmoussa, H., Elfalleh, W., He, S., Romdhane, M., Benhamou, A., & Chawech, R. (2018). Microwave hydrodiffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: Optimization by response surface methodology. Industrial Crops and Products, 124, 633-642.

Binello, A., Orio, L., Pignata, G., Nicola, S., Chemat, F., & Cravotto, G. (2014). Effect of microwaves on the in situ hydrodistillation of four different Lamiaceae. Comptes Rendus Chimie, 17(3), 181-186.

Castro-Alayo, E. M., Chávez-Quintana, S. G., Auquiñivín-Silva, E. A., Fernández-Jeri, A. B., Acha-De la Cruz, O., et al. (2019). Essential oils of native plants from Peru: Effect of the place of cultivation on the physicochemical characteristics and antioxidant activity. Scientia Agropecuaria, 10(4), 479-487.

Chang, T., & Zhao, G. (2021). Ice inhibition for cryopreservation: materials, strategies, and challenges. Advanced Science, 8(6), 2002425.

Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357-377.

Cruz, F., Espinoza, M., Santiesteban, A., Cruz-López, L. (2021). Caracterización química de los volátiles de Tagetes nelsonii. Polibotánica, 0(51), 203-211.

Díaz, U. J. (2014). Estructura química del extracto acuoso y etanólico de las hojas de Tagetes elliptica Sm. “Chincho”, actividad antibacteriana y antifúngica en la aplicación de un alimento andino [Universidad Nacional Mayor de San Marcos].

Fotsing, F., Stéphane, Y., Kezetas, B., Jules, J., El-Saber Batiha, G., Ali, I., & Bruno, L. N. (2021). Extraction of Bioactive Compounds from Medicinal Plants and Herbs, 1-39.

Gakuubi, M. M., Wagacha, J. M., Dossaji, S. F., & Wanzala, W. (2016). Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. International Journal of Microbiology, Article ID 7352509.

Gouda, M., El-Din Bekhit, A., Tang, Y., Huang, Y., Huang, L., He, Y., & Li, X. (2021). Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrasonics Sonochemistry, 73, 105538.

Gowda, N. A. N., Gurikar, C., Anusha, M. B., & Gupta, S. (2022). Ultrasound-Assisted and Microwave-Assisted Extraction, GC-MS Characterization and Antimicrobial Potential of Freeze-dried L. camara Flower. Journal of Pure and Applied Microbiology, 16(1), 526-540.

Guerfi, M., Berredjem, M., Bouzina, A., Ben Hadda, T., Marminon, C., Otmane Rachedi, K. (2020). Novel α-sulfamidophosphonate analogues of fotemustine: efficient synthesis using ultrasound under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly, 151(12), 1859-1865

Hernández, M. P., Novoa, M. C., Colares, M. N., Perrotta, V. G., Nughes, L. M., Arambarri, A. M. (2015). Anatomía foliar de hierbas terrestres medicinales que crecen en la región rioplatense (Buenos Aires, Argentina). Bonplandia, 24(2), 97-124.

Ho, Y. S.; Wu, J. Y. & Chang, C. Y. (2019). A new natural antioxidant biomaterial from Cinnamomum osmophloeum Kanehira leaves represses melanogenesis and protects against DNA damage. Antioxidants, 8(10), 474.

Iannicelli, J., Guariniello, J., Pitta Álvarez, S., & Escandón, A. (2018). Traditional uses, conservation status and biotechnological advances for a group of aromatic / medicinal native plants from America. Bol Latinoam Caribe Plant Med Aromat, 17(5), 453-491.

Inoue, M., Hayashi, S., & E. Craker, L. (2019). Role of Medicinal and Aromatic Plants: Past, Present, and Future. In Pharmacognosy - Medicinal Plants. 1-13

Ismail, M. F., Madkour, H. M., Salem, M. S., Mohamed, A. M., & Aly, A. F. (2021). Design, synthesis and insecticidal activity of new 1, 3, 4-thiadiazole and 1, 3, 4-thiadiazolo [3, 2-a] pyrimidine derivatives under solvent-free conditions. Synthetic Communications, 51(17), 2644-2660

Jakubczyk, K., Tuchowska, A., & Janda-Milczarek, K. (2021). Plant hydrolates–Antioxidant properties, chemical composition and potential applications. Biomedicine & Pharmacotherapy, 142, 112033.

Jadhav, N. L., Garule, P. A., & Pinjari, D. V. (2022). Comparative study of ultrasound pretreatment method with conventional hydrodistillation method for extraction of essential oil from Piper betle L. (Paan). Indian Chemical Engineer, 64(2), 132-140.

Jiao, Y., Li, D., Chang, Y. & Xiao, Y. (2018). Effect of freeze-thaw pretreatment on extraction yield and antioxidant bioactivity of corn carotenoids (lutein and zeaxanthin). Journal of Food Quality,1-8.

Karimian, P., Kavoosi, G., & Amirghofran, Z. (2014). Anti–oxidative and anti–inflammatory effects of Tagetes minuta essential oil in activated macrophages. Asian Pacific Journal of Tropical Biomedicine, 4(3), 219-227.

Kowalski, R., Kowalska, G., Jamroz, J., Nawrocka, A., & Metyk, D. (2015). Effect of the ultrasound-assisted preliminary maceration on the efficiency of the essential oil distillation from selected herbal raw materials. Ultrasonics Sonochemistry, 24, 214-220.

Kumar, S. S., Manoj, P., Shetty, N. P., & Giridhar, P. (2015). Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L. Journal of the Science of Food and Agriculture, 95(9), 1812-1820.

Kusuma, H. S., Altway, A., & Mahfud, M. (2018). Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. Journal of Industrial and Engineering Chemistry, 58, 343-348.

Labiad, H., Et-Tahir, A., Ghanmi, M., Satrani, B., Aljaiyash, A., Chaouch, A., & Fadli, M. (2020). Ethnopharmacological survey of aromatic and medicinal plants of the pharmacopoeia of northern Morocco. Ethnobotany Research and Applications, 19, 1-16.

Lei, G., Li, J., Zheng, T., Yao, J., Chen, J., & Duan, L. (2018). Comparative Chemical Profiles of Essential Oils and Hydrolate Extracts from Fresh Flowers of Eight Paeonia suffruticosa Andr. Cultivars from central China. Molecules, 23(12).

Lemus-Mondaca, R., Vega-Gálvez, A., Rojas, P., Stucken, K., Delporte, C., et al. (2018). Antioxidant, antimicrobial and anti-inflammatory potential of Stevia rebaudiana leaves: effect of different drying methods. Journal of Applied Research on Medicinal and Aromatic Plants, 11, 37-46.

Li, R., Shang, H., Wu, H., Wang, M., Duan, M., & Yang, J. (2018). Thermal inactivation kinetics and effects of drying methods on the phenolic profile and antioxidant activities of chicory (Cichorium intybus L.) leaves. Scientific reports, 8(1), 1-9.

Lima, B., Agüero, M. B., Zygadlo, J., Tapia, A., Solis, C., et al. (2009). Antimicrobial activity of extracts, essential oil and metabolites obtained from Tagetes mendocina. In J. Chil. Chem. Soc, 54(1), 68-72.

Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255.

Mansour-Gueddes, S. B., Saidana-Naija, D., Flamini, G., Cheraief, I., & Braham, M. (2022). Assessment of the climatic condition's impact on volatiles, polyphenols and mineral contents in Tunisian olive tree (Olea europaea L.). Polish Journal of Environmental Studies, 31(1), 219-230.

Marotti, M., Piccaglia, R., Biavati, B., & Marotti, I. (2011). Characterization and yield evaluation of essential oils from different tagetes species. Journal of Essential Oil Research, 16(5), 440–444.

Megawati, Fardhyanti, D. S., Sediawan, W. B., & Hisyam, A. (2019). Kinetics of mace (Myristicae arillus) essential oil extraction using microwave assisted hydrodistillation: Effect of microwave power. Industrial Crops and Products, 131, 315-322.

Mercado-Mercado, G., Rosa-Carrillo, L. D. L., Wall-Medrano, A., López-Díaz, J. A., & Álvarez-Parrilla, E. (2013). Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Nutrición hospitalaria, 28(1), 36-46.

Mnayer, D., Fabiano-Tixier, A.-S., Petitcolas, E., Ruiz, K., Hamieh, T., & Chemat, F. (2017). Extraction of green absolute from thyme using ultrasound and sunflower oil. Resource-Efficient Technologies, 3(1), 12-21.

Moghaddam, M., Omidbiagi, R., & Sefidkon, F. (2011). Changes in content and chemical composition of Tagetes minuta oil at various harvest times. Journal of Essential Oil Bearing Plants, 19(1), 18–20.

Mohammadhosseini, M., Akbarzadeh, A., & Flamini, G. (2017). Profiling of compositions of essential oils and volatiles of Salvia limbata using traditional and advanced techniques and evaluation for biological activities of their extracts. Chemistry & Biodiversity, 14(5), 28273408.

Naidoo, Y., Rikisahedew, J. J., Dewir, Y. H., Ali, A. A.& Rihan, H. Z. (2021). Foliar micromorphology, ultrastructure and histochemical analyses of Tagetes minuta L. leaves. Micron, 150, 103125

Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O.& Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food chemistry, 187, 507-516

Natividad, B., A., Cisneros, S., G., Rojas, P., R., Matos, R., A., & Ramos, R., M. (2009). Componentes antioxidantes del chincho (Tagetes elliptica Sm): Vitamina C y flavonoides. Investig. Valdizana, 3(2), 94-99.

Nurhaslina, C. R., Andi Bacho, S., & Mustapa, A. N. (2022). Review on drying methods for herbal plants. Materials Today: Proceedings, 63, S122-S139.

Panja, P. (2018). Green extraction methods of food polyphenols from vegetable materials. Current Opinion in Food Science, 23, 173-182.

Pelin Bahadırlı, N. (2020). Essential oil content and compositions of naturalized Tagetes minuta L. (Wild marigold). Volatiles & Essent. Oils, 7(2), 17-21.

Qun, Y., Chuan, L., Zhenhua, D., Bing, L., Weiwen, D.& Feifei, S. (2017). Ultrasonic microwave-assisted extraction of polyphenols, flavonoids, triterpenoids, and vitamin C from Clinacanthus nutans. Journal of Food Sciences, 35(1), 89-94.

Rk, J., Sm, B., & Joshi, R. K. (2022). Volatile composition and biological activities of tagetes (Marigold): An overview. International Journal of Pharmacognosy & Chinese, 6(1), 1-13.

Ruiz, J. R., & Salazar, M. E. (2021). Composición química y actividad antibacteriana de los aceites esenciales de Citrus paradisi, Juglans neotropica Diels, Schinus molle y Tagetes elliptica Smith. Revista de La Sociedad Química Del Perú, 87(3), 228-241.

Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5(12), e03044.

Saini, R. K., Shetty, N. P., Prakash, M., & Giridhar, P. (2014). Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. Journal of food science and technology, 51(9), 2176-2182.

Santos, L. R. D., de Melo Silva, S. C. & Rodrigues, T. M. (2016). Non-glandular trichomes in Lamiaceae and Verbenaceae species: morphological and histochemical features indicate more than physical protection. New Zealand Journal of Botany, 54(4), 446-457.

Segovia, I. K., Suárez De La Cruz, L. L., Castro, A. J., Suárez, S., & Ruiz, J. R. (2010.). Composición química del aceite esencial de Tagetes elliptica smith “chincho” y actividades antioxidante, antibacteriana y antifúngica. Ciencia e investigación, 13(2), 81-86.

Semeniuc, C. A., Socaciu, M. I., Socaci, S. A., Mureșan, V., Fogarasi, M., & Rotar, A. M. (2018). Chemometric comparison and classification of some essential oils extracted from plants belonging to Apiaceae and Lamiaceae families based on their chemical composition and biological activities. Molecules, 23(9): 2261.

Senatore, F., Napolitano, F., Mohamed, M. A. H., Harris, P. J. C., Mnkeni, P. N. S., & Henderson, J. (2004). Antibacterial activity of Tagetes minuta L. (Asteraceae) essential oil with different chemical composition. Flavour and Fragrance Journal, 19(6), 574-578.

Singh Chouhan, K. B., Tandey, R., Sen, K. K., Mehta, R., & Mandal, V. (2019). Critical analysis of microwave hydrodiffusion and gravity as a green tool for extraction of essential oils: Time to replace traditional distillation. Trends in Food Science & Technology, 92, 12-21.

Singh, P., Krishna, A., Kumar, V., Krishna, S., Singh, K., Gupta, M., & Singh, S. (2015). Chemistry and biology of industrial crop Tagetes Species: a review. Journal of Essential Oil Research, 28(1), 1-14.

Śmigielski, K. B., Prusinowska, R., Krosowiak, K., & Sikora, M. (2013). Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). Journal of Essential Oil Research, 25(4), 291-299.

Taype-Landeo, O. I., & Ruiz-Rodriguez, A. I. (2021). Compuestos bioactivos, perfil antioxidante y actividad antimicrobiana del aceite esencial de Tagetes erecta y Tagetes patula. Dominio de las Ciencias, 7(5), 451–464.

Vázquez, A. M., Aimar, M. L., Demmel, G. I., Criado, S. G., Ruiz, G. M., et al. (2011). Determinación de compuestos orgánicos volátiles de Tagetes argentina Cabrera (Asteraceae) utilizando análisis por HS-SPME. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 10(5), 463–469.

Tomás, G., Huamán M., J., Aguirre M., R., Guerrero A., M., Orihuela R., C., Candia T., K., & Barreda T., M. (2010). Estudio químico y fitoquímico del Tagetes elliptica "chincho" y Calathea lutea "bijao", como alternativa de alimentos funcionales. Revista Peruana de Química e Ingeniería Química, 13(1), 11-13.

Wang, H. F., Yih, K. H., Yang, C. H., & Huang, K. F. (2017). Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. Journal of Food and Drug Analysis, 25(4), 881-889.

Published

2022-11-29

How to Cite

Torre Alvarez, R. ., Nolazco Cama, D. ., & Tellez Monzón, L. (2022). Effect of the conditioning and ultrasound-microwave sequential technique on the yield, chemical and functional properties of the essential oils and hydrolats extracted from the leaves of Tagetes elliptica Smith. Scientia Agropecuaria, 13(4), 315-325. https://doi.org/10.17268/sci.agropecu.2022.028

Issue

Section

Original Articles