Selection of stable and high-yielding lines of purple corn (Zea mays L.) var. popcorn using multi-trait stability index (MTSI)
DOI:
https://doi.org/10.17268/sci.agropecu.2022.011Keywords:
genotype x environment interaction, purple popcorn, principal component analysis, native Peruvian cornAbstract
A novel approach to strengthen maize breeding strategies is the use of the multi-trait stability index (MTSI), this index allows the identification of more stable and high-yielding genotypes with greater reliability than previous methods. To select outstanding purple popcorn S1 lines based on the MTSI, 80 purple popcorn S1 lines were evaluated in three environments. 11 characteristics were studied: expansion volume (VE), pigmented pericarp (PP), grain yield (GY), expansion percentage (PE), male flowering (FM), ear length (LM), grain moisture (HG), plant height (AP), weight of 100 grains (PG), volume of 100 grains (VG) and expanded grain size (TG). The results indicated that the environmental differences contributed to a greater extent to the total variation, followed by the genotypic differences, both were significant for all the variables, in addition, the genotype x environment interaction was significant in 10 of 11 characteristics evaluated. According to the MTSI and with a selection pressure of 15%, 12 purple popcorn S1 lines were selected as the most stable and high yielding among the 80 genotypes evaluated. The selected S1 lines will be converted into double haploid lines and evaluated for their general and specific combinatorial abilities, likewise, the unknown antioxidant capacity will be determined.
References
Abdelghany, A. M., Zhang, S., Azam, M., Shaibu, A. S., Feng, Y., et al. (2021). Exploring the Phenotypic Stability of Soybean Seed Compositions Using Multi-Trait Stability Index Approach. Agronomy, 11(11), 2200.
Allard, R. W., & Bradshaw, A. D. (1964). Implications of genotype‐environmental interactions in applied plant breeding 1. Crop science, 4(5), 503-508.
Alwala, S., Kwolek, T., McPherson, M., Pellow, J., & Meyer, D. (2010). A comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. Field crops research, 119(2-3), 225-230.
Benakanahalli, N. K., Sridhara, S., Ramesh, N., Olivoto, T., Sreekantappa, G., et al. (2021). A Framework for Identification of Stable Genotypes Basedon MTSI and MGDII Indexes: An Example in Guar (Cymopsis tetragonoloba L.). Agronomy, 11(6), 1221.
Falconer, D. S., Mackay, T. F., & Frankham, R. (1996). Introduction to quantitative genetics (4th edn). Trends in Genetics, 12(7), 280.
Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian journal of agricultural research, 14(6), 742-754.
Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2):423–447.
Hussain, T., Akram, Z., Shabbir, G., Manaf, A., & Ahmed, M. (2021). Identification of drought tolerant Chickpea genotypes through multi trait stability index. Saudi Journal of Biological Sciences, 28(12), 6818-6828.
León, R., Rosero, A., García, J. L., Morelo, J., Orozco, A., et al. (2021). Multi-Trait Selection Indices for Identifying New Cassava Varieties Adapted to the Caribbean Region of Colombia. Agronomy, 11(9), 1694.
Nataraj, V., Bhartiya, A., Singh, C. P., Devi, H. N., Deshmukh, M. P., et al. (2021). WAASB‐based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agronomy Journal, 113(4), 3089-3099.
Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789.
Olivoto, T., Lúcio, A. D., da Silva, J. A., Sari, B. G., & Diel, M. I. (2019). Mean performance and stability in multi‐environment trials II: Selection based on multiple traits. Agronomy Journal, 111(6), 2961-2969.
Olivoto, T., Nardino, M., Meira, D., Meier, C., Follmann, D. N., et al. (2021). Multi‐trait selection for mean performance and stability in maize. Agronomy Journal, 113(5), 3968-3974.
Padmaja, P. G., Kalaisekar, A., Tonapi, V. A., & Madhusudhana, R. (2022). A multi‐season analysis of barnyard millet (Echinochloa frumentacea) germplasm lines for shoot fly resistance and multi‐trait stability. Plant Breeding.
Paraginski, R. T., de Souza, N. L., Alves, G. H., Ziegler, V., de Oliveira, M., & Elias, M. C. (2016). Sensory and nutritional evaluation of popcorn kernels with yellow, white and red pericarps expanded in different ways. Journal of Cereal Science, 69, 383-391.
Pordesimo, L. O., Anantheswaran, R. C., Fleischmann, A. M., Lin, Y. E., & Hanna, M. A. (1990). Physical properties as indicators of popping characteristics of microwave popcorn. Journal of Food Science, 55(5), 1352-1355.
R Core Team. (2021). R: A language and environment for statistical computing. 4.0.4. R Foundation for Statistical Computing, Viena, Austria.
Ro, S., Chea, L., Ngoun, S., Stewart, Z. P., Roeurn, S., et al. (2021). Response of tomato genotypes under different high temperatures in field and greenhouse conditions. Plants, 10(3), 449.
Sayre, K. D., Verhulst, N., & Govaerts, B. (2012) Manual de determinación de rendimiento (No. 631.558 SAY. CIMMYT.). Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), México DF (México).
Sellami, M. H., Pulvento, C., & Lavini, A. (2021). Selection of Suitable Genotypes of Lentil (Lens culinaris Medik.) under Rainfed Conditions in South Italy Using Multi-Trait Stability Index (MTSI). Agronomy, 11(9), 1807.
Sharifi, P., Erfani, A., Abbasian, A., & Mohaddesi, A. (2020). Stability of some of rice genotypes based on WAASB and MTSI indices. Iranian Journal of Genetics and Plant Breeding, 9(2), 1-11.
Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., et al. (2021). Genotype× environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field Crops Research, 270, 108224.
Yue, H., Wei, J., Xie, J., Chen, S., Peng, H., et al. (2022). A Study on Genotype-by-Environment Interaction Analysis for Agronomic Traits of Maize Genotypes Across Huang-Huai-Hai Region in China. Phyton, 91(1), 57.
Zuffo, A. M., Steiner, F., Aguilera, J. G., Teodoro, P. E., Teodoro, L. P. R., & Busch, A. (2020). Multi‐trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. Journal of Agronomy and Crop Science, 206(6), 815-822.
Zystro, J., Peters, T. E., Miller, K. M., & Tracy, W. F. (2021). Inbred and hybrid sweet corn genotype performance in diverse organic environments. Crop Science, 61(4), 2280-2293.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).