Pollination with drones: A successful response to the decline of entomophiles pollinators?

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2021.055

Keywords:

bees, agriculture, agrobiotechnology, crops, ecology

Abstract

Some types of unmanned aerial vehicles (UDs) are called drones. These equipment’s of wide versatility have been applied very recently for different tasks, among which is agriculture. From there, this technology is responding to the decline of biopolynizers in different fields around the world. The objective of this work was to analyze the implications of the use of such devices in agricultural practices in the absence of entomophiles pollinators. Methodologically it was developed as a bibliographic review, consulting databases such as Scopus, Science Direct, Google academic and others; filtering by keywords, selecting the works according to the subject of interest and the criteria of the authors. Key information from the selected documents was extracted through the documentary analysis. As a result of this review, experiences related to the application of USNs in crop fertilization were found; the literature consulted also agrees to point out that drones are a viable strategy for such activity and is at the same time a solution to the diminution of entomophiles pollinators in certain regions of the Earth. However, the reference literature, very little reports possible adverse effects, which from an ecological point of view could arise from the use of USRs in agri-food production. It is concluded that further research is needed to understand the ecological consequences that may arise from the use of the equipment.

References

Abdel-Raziq, H. M., Palmer, D. M., Koenig, P. A., Molnar, A. C., & Petersen, K. H. (2021). System design for inferring colony-level pollination activity through miniature bee-mounted sensors. Scientific reports, 11(1), 1-12.

Abrol, D. P. (2012). Pollination Biology: Biodiversity Conservation and Agricultural Production. Chatha, India: Editorial Springer.

Aizen, M., Smith-Ramirez, C., Morales, C., Vieli, L., Sáez, A., et al. (2019). Coordinated global species-importation policies are needed to reduce the sting of serious invasions: the case of alien bumble bees in South America. Journal of Applied Ecology 56, 100-106.

Akhavan, F., Kamgar, S., Nematollahi, M. A., Golneshan, A. A., Nassiri, S. M., & Khaneghah, A. M. (2021). Design, development, and performance evaluation of a ducted fan date palm (Phoenix dactylifera L.) pollinator. Scientia Horticulturae, 277, 109808.

Albert, L. A. (2005). Panorama de los plaguicidas en México. Revista de Toxicología en línea, 8, 1-17.

Altieri, M., & Nicholls, C. (2011). El potencial agroecológico de los sistemas agroforestales en América Latina. Eisa Revista de Agroecología, 27(2), 32-37.

Arizmendi, C. (2009). La crisis de los polinizadores. Biodiversitas, 85, 1-5.

Bos, M. M., Veddeler, D., Bogdanski, A. K., Klein, A. M., Tscharntke, T., et al. (2007). Caveats to quantifying ecosystem services: fruit abortion blurs benefit from crop pollination. Ecological Applications, 17 (6), 1841-1849.

Bluewhiterobotics (2021). The safest, most reliable, and productive solution is our​ Autonomous Farm - Blue White Robotics (BWR). Available in: https://bluewhiterobotics.com/

Bravo-Portocarrero, R., Zela, K., & Lima-Medina, I. (2020). Eficiencia de trampas pegantes de colores en la captura de insectos de hortalizas de hoja. Scientia Agropecuaria, 11(1), 61-66.

Carpio, L. K. (2018). El uso de la tecnología en la agricultura. Pro Sciences: Revista De Producción, Ciencias e Investigación, 2(14), 25–32.

Chagas, D. B., Monteiro, F. L., Hübner, S. D. O., Lima, M. D., & Fischer, G. (2019). Viruses that affect Apis mellifera and their occurrence in Brazil. Ciência Rural, 49(9), 1-8.

Chauvet, M., & Bianco, M. (2019). Agricultura 4.0 ¿Es posible la coexistencia de modelos productivos? In Mesas temáticas. ESOCITE-LALICS 2020.

Chechetka, S. A., Yu, Y., Tange, M., & Miyako, E. (2017). Materially engineered artificial pollinators. Chem, 2(2), 224-239.

Chen, Y., Pi, D., & Xu, Y. (2021). Neighborhood global learning-based flower pollination algorithm and its application to unmanned aerial vehicle path planning. Expert Systems with Applications, 170, 114505.

Díaz, J. E. M. (2018). Seguridad metropolitana mediante el uso coordinado de Drones. Revista Ingenierías USB Med, 9(1): 39-48.

Dropcopter (2021). Agricultural aerial solutions. Available in: https://www.dropcopter.com/agricultural-aerial-solutions

Evans, D. (2011). Internet de las cosas. Cómo la próxima evolución de Internet lo cambia todo. Cisco Internet Bussiness Solutions Group-IBSG, 11(1), 4-11.

García, R. A., & Díaz, R. M. J. (2018). Reflexiones sobre el presente y futuro de la Sanidad Vegetal en España, en el marco de los retos de la agricultura. Phytoma España: La revista profesional de sanidad vegetal, (301), 41-49.

Gleadow, R., Hanan, J., & Dorin, A. (2019). Averting robo-bees: why free-flying robotic bees are a bad idea. Emerging Topics in Life Sciences, 3(6), 723-729.

Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1-11.

Hernández, C. V., Chimil, H. L., Serrano, L. T. C., & Franco, E. L. (2015). Dron polinizador de cultivos. Tecnologías aplicadas para alternativas sustentables. Rev. Mex. Cienc. Agríc., 1, 67-71.

Jafferis, N. T., Helbling, E. F., Karpelson, M., & Wood, R. J. (2019). Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570(7762), 491-495.

León, J. L. T. (2020). Aeronaves pilotadas por control remoto, un apoyo tecnológico para el palmicultor. Boletín El Palmicultor, 581, 15-17.

Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., & Pham, Q. V. (2021). Unmanned aerial vehicles in smart agriculture: Applications, require-ments, and challenges. IEEE Sensors Journal.

Martínez, H. J. L. (2019). Agroquímicos en Quintana Roo: Impacto en la Alimentación, Salud y Medio Ambiente. Estudios Interculturales, 2(9), 22-22.

Molpeceres, M. C., Zulaica, M. L., & Barsky, A. (2020). De la restricción del uso de agroquímicos a la promoción de la agroecología. Proyección. Estudios Geográficos y de Ordenamiento Territorial, 14(27), 160-186.

Montalva, J. (2012). La difícil situación del abejorro más austral del mundo (Bombus dahlbomii Guérin-Méneville, 1835). Boletín de Biodiversidad de Chile, 7, 1-3.

Morales, C. L. (2007). Introducción de abejorros (Bombus) no nativos: causas, consecuencias ecológicas y perspectivas. Ecología Austral, 17(1), 051-065.

Nieto, M. I., Barrantes, O., Reiné, R., Frasinelli, C. A., & Frigerio, K. (2019). Estrategias de mitigación de emisiones de gases de efecto invernadero en sistemas ganaderos bovinos extensivos del sur de San Luis, Argentina. Revista de Investigaciones agropecuarias, 45(3), 1-14.

Nimmo, R. (2021). Replacing cheap nature? Sustainability, capitalist future-making and political ecologies of robotic pollination. Environment and Planning E: Nature and Space, 0(0), 1-21.

Oerke, E. C. (2006). Crop losses to pests. J. Agric. Sci. 144 (1):31-43.

Pauly, A., Levy, K., Noël, G., Sonet, G., Boevé, J. L., & Mandelik, Y. (2020). Lasioglossum dorchini (Hymenoptera: Apoidea: Halictidae) a new species of bee from Israel. Belgian Journal of Entomology, 105, 1-24.

Pino, E. (2019). Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología. Idesia (Arica), 37(1), 75-84.

Ramos, D. A. L., Sánchez, M. L. E. L., Juana, S., Lamas, I., & Lorenzo, C. J. D. (2010). Estrategia para el manejo sustentable de la abeja melipona beecheii en la polinización de los cultivos en la agricultura urbana. Revista científica Avances, 5, 1-6.

Reghu, S., You, H., Seenivasan, K., Nishimura, S., Taniike, T., & Miyako, E. (2020). Design and Control of Bioinspired Millibots. Adv. Intell. Syst., 2, 2-6.

Reynaldi, F. J., Lucia, M., & García, M. L. G. (2015). Ascosphaera apis, the entomopathogenic fungus affecting larvae of native bees (Xylocopa augusti): First report in South America. Revista iberoamericana de micologia, 32(4), 261-264.

Sáez, A., Morales, C., Ramos, L., & Aizen, M. (2014). Extremely frequent bee visits increase pollen deposition but reduce drupelet set in rasperrry. Journal of Applied Ecology, 51, 1603-1612.

Sánchez, A. (2018). Factores que reducen la población de abejas (Apis mellifera) en zonas tropicales: una revisión. Trabajo de grado presentado como requisito de: para optar al título Especialista en Planeación Ambiental. Universidad Militar Nueva Granada. Bogotá, Colombia.

Syeda, I. H., Alam, M. M., Illahi, U., & Su'ud, M. M. (2021). Advance control strategies using image processing, UAV and AI in agriculture: a review. World Journal of Engineering, 18(4), 579-589.

Silveira-Gramont, M., Aldana-Madrid, M., Piri-Santana, J., Valenzuela-Quintanar, A., Jasa-Silveira, G., & Rodríguez-Olabarría, G. (2018). Plaguicidas agrícolas: Un marco de referencia para evaluar riesgos a la salud en comunidades rurales en el estado de Sonora, México. Rev. Int. Contam. Ambie., 34(1), 7-21.

Stout, J. C., & Goulson, D. (2020). Bumble bees in Tasmania: their distribution and potential impact on Australian flora and fauna. Bee World, 8(80), 86.

Yang, X., & Miyako, E. (2020). Soap Bubble Pollination. Iscience, 23(6), 101188.

Published

2021-10-08

How to Cite

Montilla-Pacheco, A. de J. ., Pacheco-Gil, H. A. ., Pastrán-Calles, F. R. ., & Rodríguez-Pincay, I. R. . (2021). Pollination with drones: A successful response to the decline of entomophiles pollinators?. Scientia Agropecuaria, 12(4), 509-516. https://doi.org/10.17268/sci.agropecu.2021.055

Issue

Section

Review Articles