Postharvest maturation of Pouteria lucuma: Effect of storage conditions on physicochemical components, metabolites and antioxidant and hypoglycemic capacity

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2021.045

Keywords:

GC-MS, IC50, ascorbic acid, α-amylase, α-glucosidase, functional properties, postharvest ripening

Abstract

Inadequate storage conditions can affect the sensory, physicochemical, and functional properties of tropical fruits such as Pouteria lucuma; which is a climacteric fruit, with a pleasant aroma and flavor; Peru being the main producer and exporter of this fruit, postharvest storage conditions have not been studied to maintain its properties. The objective of the research was to evaluate the effect of the storage conditions on the main physicochemical components, primary and secondary metabolites, antioxidant, and hypoglycemic capacity during postharvest ripening, under two storage conditions: ambient (29 °C and 70% RH) and climatic chamber (15 °C and 90% RH). Regarding the physicochemical characteristics, the state of maturity influenced acidity, pH, reducing sugars, starch, dietary fiber, firmness, pulp color and epicarp. In climate-controlled storage, glucose is the only metabolite that increases; while fructose, alcohol sugars and amino acids (Ala and Val), present higher values ​​under ambient conditions; sucrose, organic acids, amino acids (Tyr, Glu, Asp and Thr), β-carotene, total phenolic compounds and total carotenoids were not affected by the type of storage. The measure of antioxidant and hypoglycemic capacity decreased significantly (p < 0,05), showing to be affected only by the state of maturity. The study of the carotenoid profile according to its spectrum (UV-vis) showed the presence of the group of xanthophylls. The results indicate that the state of maturity concerning the storage condition influenced most of the changes studied.

References

Ackermann, J., Fischer, M., & Amadb, R. (1992). Changes in Sugars, Acids, and Amino Acids during Ripening and Storage of Apples (Cv. Glockenapfel). Journal of Agricultural and Food Chemistry, 40, 1131-1134.

Aguilar-Galvez, A., García-Ríos, D., Janampa, C., Mejía, C., Chirinos, R., Pedreschi, R., & Campos, D. (2021). Metabolites, volatile compounds and in vitro functional properties during growth and commercial harvest of Peruvian lucuma (Pouteria lucuma). Food Bioscience, 40, 100882.

Alegre, MG., & Ticse, AM. (2017). Caracterización de macrocomponentes en pulpa congelada de tres biotipos de Lúcuma (Pouteria lucuma) (Tesis para optar el Título de Ingeniero Agroindustrial). Universidad San Ignacio de Loyola.Lima-Perú.

Andre, C., Oufir, M., Guignard, C., Hoffmann, L., Hausmann, J., Evers, D., & Larondelle, Y. (2007). Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid, and petanin. Journal of Agricultural and Food Chemistry, 55(26), 10839–10849.

AOAC (Association of Official Analytical Chemists, US). (2007). Official methods of analysis of AOAC International. Ed. W. Horwitz. 18 ed. Washington, USA, p. 700.

Arnao, M., Cano, A., & Acosta. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73(2), 239-244.

Arnao, M., Cano, A., Hernández-Ruiz, J., García-Canovas, F., & Acosta, M. (1996). Inhibition by L-ascorbic acid and other antioxidants of the 2.2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Analytical Biochemistry, 236(2), 255-261.

Carvajal, F., Palma, F., Jamilena, M., & Garrido, D. (2015). Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit. Postharvest Biology and Technology, 108, 68–77.

Chapman, H., & Pratt, P. (1973). Métodos de Análisis para Suelos, Plantas y Aguas. México, Trillas, p. 190.

Díaz-Pérez, J. C., Bautista, S., & Villanueva, R. (2000). Quality changes in sapote mamey fruit during ripening and storage. Postharvest Biology and Technology, 18, 67-73.

Fonseca, S. C., Oliveira, F., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, 52(2), 99-119.

Fruk, G., Cmelik, Z., Jemric, T., Hribar, J., & Vidrih, R. (2014). Pectin role in woolliness development in peaches and nectarines: A review. Scientia Horticulturae, 180, 1-5.

Fuentealba, C., Galvéz, L., Cobos, A., Olaeta, J., Defilippi, B., Chirinos, R., Campos, D., & Pedreschi, R. (2016). Characterization of main primary and secondary metabolites and in vitro antioxidant and antihyperglycemic properties in the mesocarp of three biotypes of Pouteria lucuma. Food Chemistry, 190, 403-411.

Gallie, D.R. (2013). L-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica, 1, 1–24.

García-Ríos, D., Aguilar-Galvez, A., Chirinos, R., Pedreschi, R., & Campos, D. (2020). Relevant physicochemical properties and metabolites with functional properties of two commercial varieties of Peruvian Pouteria lucuma. Journal of Food Processing and Preservation, 44(6), e14479.

Gonzalez-Muñoz, A., Quesille-Villalobos, A., Fuentealba, C., Shetty, K., & Galvez, L. (2013). Potential of chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. Journal of Agricultural and Food Chemistry, 61, 10995–11007.

Grignon, C., & Sentenac, H. (1991). pH and Ionic Conditions in the Apoplast. Annual Review of Plant Physiology and Molecular Biology, 42, 103-128.

Inbaraj, S., Chien, J., & Chen, B. (2006). Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. Journal of Chromatography, A 1102, 193-199.

Inga, M., García, J., Aguilar-Galvez, A., Campos, D., & Osorio, C. (2019). Chemical characterization of odouractive volatile compounds during lucuma (Pouteria lucuma) fruit ripening. CyTA - Journal of Food, 17, 494-500.

Jan, I., & Rab, A. (2012). Influence of storage duration on physic-chemical changes in fruit of apple cultivars. Journal of Animal and Plant Science, 22, 708–714.

Jiang, F., Lopez, A., Jeon, Sh., Tonetto de Freitas, S., Yu, Q., et al. (2019). Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticulture Research, 6, 1-15.

Kao, T., Loh, C., Inbaraj, S., & Chen, B. (2012). Determination of carotenoids in Taraxacum formosanum by HPLC-DAD-APCI-MS and preparation by column chromatography. Journal of Pharmaceutical and Biomedical Analysis, 66, 144-153.

Klimczak, I., & Gliszczynka-Swinglo, A. (2015). Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry, 175, 100-105.

Loewus, F., & Murthy, P. (2000). Myo-Inositol metabolism in plants. Plant Science, 150, 1-19.

Ma, J., Yang, H., Basile, M., & Kennelly, E. (2004). Analysis of Polyphenolic Antioxidants from the Fruits of Three Pouteria Species by Selected Ion Monitoring Liquid Chromatography−Mass Spectrometry. Journal of Agricultural and Food Chemistry, 52, 5873-5878.

Mahattanatawee, K., Manthey, J. A., Luzio, G., Talcott, S. T., Goodner, K., & Balwin, E. A. (2006). Total Antioxidant Activity and fiber Contant of Select Florida Grown Tropical. Journal of Agricltural and Food Chemistry, 54, 7355-7363.

Mesa, K., Serra, S., Masiaa, A., Gagliardi, F., Bucci, D., & Musacchi, S. (2016). Seasonal trends of starch and soluble carbohydrates in fruits and leaves of ‘Abbé Fétel’ pear trees and their relationship to fruit quality parameters. Scientia Horticulturae, 211, 60–69.

Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.

Pedreschi, R., Muñoz, P., Robledo, P., Becerra, C., Defilippi, B. G., et al. (2014). Metabolomics analysis of postharvest ripening heterogeneity of «Hass» avocadoes. Postharvest Biology and Technology, 92, 172-179.

Pinto, M., Gálvez, L., Apostolidis, E., Lajolo, F., Genovese, M., & Shetty, K. (2009). Evaluation of Antihyperglycemia and Antihypertension Potential of Native Peruvian Fruits Using In vitro Models. Journal of medicinal Food, 12(2), 278-291.

Rojas-Garbanzo, C., Pérez, A., Bustos-Carmona, J., & Vaillant F. (2011). Identification and quantitation of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour. Food Research International 44, 2377-2384.

Saltveit, M. E. (2016). Ethylene Effects. In Gross, K. C; Wang, C. Y; Saltveit, ME (eds.). United States Department of Agriculture, p. 76-82.

Sheng, K., Wei, S., Mei, J., & Xie, J. (2021). Chilling injury, physicochemical properties, and antioxidant enzyme activities of red pitahaya (hylocereus polyrhizus) fruits under cold storage stress. Phyton-International Journal of Experimental Botany, 90(1), 291–305.

SIICEX (Sistema de Información de Comercio Exterior) (2020). La lúcuma (en línea, sitio web). Consultado 21 abril 2020. Disponible en http://www.siicex.gob.pe/siicex/portal5ES.asp?_page_=160.00000.

Simonovska, B., Vovk, I., Glavnik, V., & Cernelic, K. (2013). Effects of extraction and high-performance liquid chromatographic conditions on the determination of lutein in spinach. Journal of Chomatography A, 1276, 95-101.

Singleton, L., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybedic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.

Tsaniklidis, G., Delis, C., Nikoloudakis, N., Katinakis, P., & Aivalakis, G. (2014). Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits. Plant Physiology and Biochemistry, 84, 149-157.

Vargas, M. L., Centurión, A., Tamayo, J., & Sauri, E. (2005). Efecto del almacenamiento a bajas temperaturas sobre la calidad del chicozapote (Achras sapota). Revista Iberoamericana de Tecnología Postcosecha, 7(1), 14-23.

Villanueva, C. (2001). La lúcuma. Fondo Editorial Casa Grande. Lima-Perú, p. 73.

Wang, T., Gonzalez, A., Gbur, E., & Aselaje, J. (1993). Organic Acid Changes During Ripening of Processing Peaches. Journal of Food Science, 58(3), 631-632.

Watada, A., Herner, R., Kader, A., Romani, R., & Staby, G. (1984). Terminology for the description of developmental stages of horticultural crops. Hort Science, 19(1), 20-21.

Wills, R., & Golding, JB. (2016). Temperature. In Wills, R; Golding, JB (eds.). New Zealand, CABI. p. 63-89.

Woolf, A. B., Arpaia, M. L., Defilippi, B. G., & Bower, J. P. (2020). Subtropical fruits: Avocados. In Controlled and modified atmospheres for fresh and fresh-cut produce (pp. 389–397). Academic Press.

Wu, X., Beecher, G., Holden, J. M., Haytowitz, D., Gebhardt, S., & Prior, R. (2004). Lipophilic and Hydrophilic Antioxidant Capacities of Common Foods in the United States. Journal of Agricultural and Food Chemistry, 52, 4026-4037.

Zhang, Y., Li, P., & Cheng, L. (2010). Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chemistry, 123, 1010-1018.

Zhang, W., Zhao, H., Jiang, H., Xu, Y., Cao, J., & Jiang, W. (2020). Multiple 1-MCP treatment more effectively alleviated postharvest nectarine chilling injury than conventional one-time 1-MCP treatment by regulating ROS and energy metabolism. Food Chemistry, 330, 127256.

Published

2021-08-20

How to Cite

Inga, M., Aguilar-Galvez, A. ., & Campos, D. . (2021). Postharvest maturation of Pouteria lucuma: Effect of storage conditions on physicochemical components, metabolites and antioxidant and hypoglycemic capacity. Scientia Agropecuaria, 12(3), 411-419. https://doi.org/10.17268/sci.agropecu.2021.045

Issue

Section

Original Articles