Diets with biological silage of cornmeal improve the productive performance of river shrimp Cryphiops caementarius (Crustacea: Palaemonidae)
DOI:
https://doi.org/10.17268/sci.agropecu.2020.03.13Keywords:
Freshwater prawn, growth, silage, corn, Cryphiops.Abstract
The aim was to evaluate diets with biological cornmeal silage in order to improve the productive performance of Cryphiops caementarius river shrimp. Shrimp were grown in 12 aquariums (55 L). Shrimp were randomly stocked (32 m-2) and fed diets containing 4.2%, 8.4% and 12.5% cornmeal silage and a control diet without silage. Experiment lasted 60 days. Physical, organoleptic and chemical quality of silage and the diets were analyzed at beginning. Silage had 8.57% protein; 16.49% total lipids; 1.45% fiber; 2.25% ash; 71.24% carbohydrates, and the pH was 4.40. Increase in level of corn silage (0% to 12.5%) in diets caused an increase in carbohydrates (38% to 47%) and a decrease in lipids (11% to 14%). Shrimp survival was similar (p > 0.05) between treatments (> 88%). Diet with 12.5% corn silage caused higher growth rates shrimp weight (p < 0.05) than those fed a diet without silage; although it was similar (p > 0.05) with those fed with 8.4% and 4.2% silage.
References
Acosta, A.; Quiñones, D; Reyes, W. 2018. Efecto de dietas con lecitina de soya en el crecimiento, muda y supervivencia de machos del camarón de río Cryphiops caementarius (Crustacea: Palaemonidae). Scientia Agropecuaria 9(1): 143-151.
Aghababaie, M.; Beheshti, M.; Khanahmadi, M. 2014. Effect of temperature and pH on formulating the kinetic growth parameters and lactic acid production of Lactobacillus bulgaricus. Nutrition and Food Sciences Research 1(1): 49-56.
Alcázar-Alay, S.C.; Meireles, M.A.A. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. Campinas 35(2): 215-236.
A.O.A.C. 1990. Official methods of analyses. 15th edition. En: Helrich, K. (Comp.). Association of Official Analytical Chemists, Inc., Arlington, VA, USA.
Arcari, M.A.; Martins, C.; Tomazi, T.; et al. 2016. Effect of the ensiling time of hydrates ground corn on silage composition and in situ starch degradability. Brazilian Journal of Veterinary Research and Animal Science 53(1): 60-71.
Bahamonde, N.; Vila, I. 1971. Sinopsis sobre la biología del camarón de río del norte. Biología Pesquera 5: 3-60.
Bahamonde, N.; Carvacho, A.; Jara, C.; et al. 1998. Categorías de conservación de decápodos nativos de aguas continentales de Chile. Boletín del Museo Nacional de Historia Natural 47: 91-100.
Barbieri, F.; Montanari, C.; Gardini, F.; et al. 2019. Biogenic amine production by lactic acid bacteria: A review. Food 8(7): 1-27.
Barrazueta, S.G.; Yánez, G.D.; Mendoza, G.X.; et al. 2019. Uso y análisis químicos de distintos sustratos para el desarrollo de biomasa bacteriana. Ciencia Digital 3(3.4): 152-166.
Berenz, Z. 1996. Ensilado de residuos de pescado. En XI Curso Internacional de Procesamiento de Productos Pesqueros. Instituto Tecnológico Pesquero del Perú. Callao, Perú. Pp. 9-31.
Betancourt, S.; Ayala, A.; Ramírez, C. 2014. Efecto del proceso de fermentación con bacterias ácido lácticas sobre propiedades reológicas de masas de maíz QPM. Revista U.D.C.A Actualidad & Divulgación Científica 17(2): 503-511.
Coelho-Emerenciano, M.G.; Massamitu-Furuya, W. 2006. Ensilado de maíz en dietas para postlarvas de camarón de agua dulce Macrobrachium rosenbergii. Investigaciones Marinas, Valparaiso 34(2): 57-61.
Dávila, E.; Medina, J.; Reyes, W. 2013. Crecimiento y supervivencia de postlarvas de Macrobrachium inca (Holthuis, 1950) (Crustacea, Palaemonidae) alimentadas con ensilado biológico. Revista Intropica 8: 79-86
De Grave, S.; Villalobos, J.; Alvarez, F.; et al. 2013. Cryphiops caementarius (errata). The IUCN Red List of Threatened Species 2013: e.T197608A107024710.
Ding, Z.; Kong, Y.; Li, J. 2016. Scavenger Receptor Class B, Type I, a CD36 Related Protein in Macrobrachium nipponense: Characterization, RNA Interference, and Expression Analysis with Different Dietary Lipid Sources. International Journal of Genomics 2016: 6325927.
El-Gendy, N.S.; Madian, H.R.; Amr, S.S.A. 2013. Design and optimization of a process for sugarcane molasses fermentation by Saccharomyces cerevisiae using response surface methodology. International Journal of Microbiology 2013: 815631.
Escobar, C.; Pachamoro, M.; Reyes, W. 2017. Supervivencia y crecimiento de machos adultos del camarón de río Cryphiops caementarius Molina, 1782 (Crustacea, Palaemonidae) expuestos a salinidades. Ecología Aplicada 16(2): 75-82.
Gaxiola, G.; Rosas, C.; Arena, L.; et al. 2006. Requerimientos de carbohidratos. En: Rosas, C.; Carrillo, O.; Wilson, R.; Andreatta, E. (Comp.). Estado actual y perspectivas de la nutrición de los camarones peneidos cultivados en Iberoamérica. Publidisa Mexicana, Mexico, DF. Pp. 143-153.
Gwirtz, J.A.; García-Casal, M.N. 2014. Processing maize flour and corn meal food products. Annals of the New York Academy of Science1312: 66-75.
Hamaker, B.R.; Tuncil, Y.E.; Shen, X. 2019. Carbohydrates of the kernel. Corn 305-318.
Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; et al. 2018. Probiotics as means of disease control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology 9:2429.
Junges, D.; Morais, G.; Spoto, M.H.F.; et al. 2017. Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of Dairy Science 100: 9048-9051.
Kleinschmit, D.H.; Kung, L. 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. Journal of Dairy Science 89: 4005-4013.
Kong, Y.; Ding, Z.; Zhang, Y.; et al. 2019. Types of carbohydrate in feed affect the growth performance, antioxidant capacity, immunity, and activity of digestive and carbohydrate metabolism enzymes in juvenile Macrobrachium nipponense. Aquaculture 512: 734282.
Méndez, M. 1981. Claves de identificación y distribución de los langostinos y camarones (Crustacea: Decápoda) del mar y ríos de la costa del Perú. Boletín del Instituto del Mar del Perú - Callao 5: 1-170.
Meruane, J.; Rivera, M.; Morales, C.; et al. 2006. Juvenile production of the freshwater prawn Cryphiops caementarius (Decapoda: Palaemonidae) under laboratory conditions in Coquimbo, Chile. Gayana 70(2): 228-236.
Moscoso, V. 2012. Catálogo de crustáceos decápodos y estomatópodos del Perú. Boletín Instituto del Mar del Perú 27(1-2): 8-207.
Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; et al. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science 101: 3980-4000.
Produce (Ministerio de la producción). 2018. Anuario estadístico pesquero y acuícola 2017. La actividad productiva del sector en números. Ministerio de la Producción. Perú.
Ramírez, M.; Cántaro, R.; Reyes, W. 2018. Growth and survival of males of Cryphiops caementarius (Palaemonidae) with diets supplemented with common salt. Latin American Journal Aquatic Research 46(2): 469-474.
Reyes, W. 2016. Efecto del recipiente de cultivo sobre la supervivencia y el crecimiento de machos de Cryphiops caementarius en sistemas individualizados. Revista Bio Ciencias 3(4): 311-325.
Reyes, W.; Ferrer, K.; Sernaqué, J. 2018. Dimorfismo sexual del camarón Cryphiops caementarius (Crustacea: Palaemonidae). En: Reyes, W.E. (Comp.). Memoria del XVIII Congreso Nacional de Estudiantes de Biología. Trabajos de investigación escritos en extenso. Nuevo Chimbote, del 3 al 8 de septiembre de 2017. Pp. 14-16.
Reyes, W.; Campoverde, L.; Ferrer, K.; et al. 2020. Preferencia termal de postlarvas del camarón de río Cryphiops caementarius previamente aclimatados a diferentes temperaturas. Ecosistemas 29(1):1802.
Romero, H.; Zelada, C.A.; Álvarez, J. 2013. Producción larval del camarón de río (Cryphiops caementarius) en condiciones de laboratorio, Huacho, Perú. Infinitum 3(1): 35-40.
Salgado-Leu, I.; Tacon, A.G.J. 2015. Effects of different protein and carbohydrate contents on growth and survival of juveniles of southern Chilean freshwater crayfish, Samastacus spinifrons. Latin American Journal Aquatic Research 43(5): 836-844.
Santos, E.M.; da Silva, T.C.; Macedo, C.H.O.; et al. 2013. Lactic acid bacteria in tropical grass silages. En: Kongo, M. (Comp.). Lactic acid bacteria - R & D for Food, Health and Livestock Purposes. IntechOpen. Pp. 335-362.
Sarman, V.; Vishal, R.; Mahavadiya, E.; et al. 2018. Nutritional aspect for freshwater prawn (Macrobrachium rosenbergii) farming. International Journal of Fauna and Biological Studies 5(2): 172-175.
Siddik, M.A.B.; Fotedar, R.; Chaklader, M.R.; et al. 2020. Fermented animal source protein as substitution of fishmeal on intestinal microbiota, immune-related cytokines and resistance to Vibrio mimicus in freshwater crayfish (Cherax cainii). Frontier in Physiology 10:1635.
Singh, J.; Dartois, A.; Kaur, L. 2010. Starch digestibility in food matrix: a review. Trends in Food Science & Technology 21: 168-180.
Sundaravadivel, C.; Sethuramalingam, T.A. 2017. Growth performance of Macrobrachium idae juveniles fed with carbohydrate rich diets. Journal of Advanced Zoology 38(1): 33-42.
Svihus, B.; Uhlen, A.K.; Harstad, O.M. 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Techonology 122: 303-320.
Tapia-Salazar, M.; Smith, T.K.; Harris, A.; et al. 2001. Effect of dietary histamine supplementation on growth and tissue amine concentrations in blue shrimp Litopenaeus stylirostris. Aquaculture 193: 281-289.
Terrones, S.; Reyes, W. 2018. Efecto de dietas con ensilado biológico de residuos de molusco en el crecimiento del camarón Cryphiops caementarius y tilapia Oreochromis niloticus en co-cultivo intensivo. Scientia Agropecuaria 9(2): 167-176.
Ulloa, D.A.; Morales, M.C.; Coelho, M.G. 2019. Biofloc technology: principles focused on potential species and the case study of Chilean river shrimp Cryphiops caementarius. Reviews Aquaculture 1-24.
Wang, X.; Li, E.; Chen, L. 2016. A review of carbohydrate nutrition and metabolism in crustaceans. North American Journal of Aquaculture 78(2): 178-187.
Wasiw, J.; Yépez, V. 2015. Evaluación poblacional del camarón Cryphiops caementarius en ríos de la costa sur del Perú. Revista de Investigaciones Veterinarias del Perú 26(2): 166-181.
Xiao, X.; Han, D.; Zhu, X.; et al. 2014. Effect of dietary cornstarch levels on growth performance, enzyme activity and hepatopancreas histology of juvenile red swamp crayfish, Procambarus clarkii (Girard). Aquaculture (426-427): 112-119.
Zainuddin; Haryati; Aslamyah, S. 2014. Effect of dietary carbohydrate levels and feeding frequencies on growth and carbohydrate digestibility by white shrimp Litopenaeus vannamei under laboratory conditions. Journal of Aquaculture Research and Development 5(6): 274.
Zettl, S.; Cree, D.; Soleimani, M.; et al. 2019. Mechanical properties of aquaculture feed pellets using plant-based proteins. Cogent Food & Agriculture 5: 1656917.
Zhu, H.; Jiang, Q.; Wang, Q.; et al. 2013. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, hepatic enzyme activities, and digestive enzyme activities of juvenile Australian redclaw crayfish, Cherax quadricarinatus (von Martens). Journal of the World Aquaculture Society 44(2): 173-186.
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).