In vitro assessment of plant growth-promoting potential of rhizosphere actinomycetes from Solanum tuberosum sp. andigena
DOI:
https://doi.org/10.17268/sci.agropecu.2020.03.11Keywords:
Rhizosphere, actinomycetes, native potato, biofertilizers, beneficial microorganisms.Abstract
As part of the rhizosphere microbiota, actinomycetes interact with their host by releasing metabolites that positively influence their host’ growth. The main objective of this study was to evaluate the plant growth-promoting capacity of actinomycetes isolated from the rhizosphere of potato crops collected in the city of San Jeronimo, Andahuaylas, Peru. Forty-nine actinomycetes strains were isolated and screened for their capacity to solubilize phosphates, fix atmospheric nitrogen, produce indole acetic acid (IAA) and produce siderophores. Out of the total number of isolates, 33 (63.27%) solubilized phosphates, 42 (87.72%) fixed atmospheric nitrogen, 10 (20.41%) produced IAA and 18 (24.49%) were siderophore producers; strains AND 13 and AND 16 being the top performers. AND 13 was identified by 16S RNAr gene amplification as Streptomyces sp. The results indicate that actinomycetes can be considered as potential PGPR organisms and could be included in biofertilization programs of potato crops as an alternative to agrochemicals.
References
Ahmad, F.; Ahmad, A.I.; Khan, M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181.
Anwar, S; Ali, B.; Sajid, I. 2016. Screening of Rhizospheric Actinomycetes for Various In-vitro and In-vivo Plant Growth Promoting (PGP) Traits and for Agroactive Compounds. Front. Microbiol. 7: 1334.
Atkin, C.; Neilands, J.; Phaff, H. 1970. Rhodotorulic Acid from Species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces, and a New Alanine-Containing Ferrichrome from Cryptococcus melibiosum. Journal of Bacteriology 103(3): 722-733.
Bhattacharyya, P.N.; Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350.
Calvo, P. 2008. Capacidad PGPR de Bacterias del género Bacillus aisladas de la rizosfera del cultivo de Papa (Solanum tuberosum) en los Andes del Perú. Tesis de grado, Universidad Nacional Agraria de la Molina, Lima. Perú. 152 pp.
Camacho, M.; La Torre, M. 2015. Efecto promotor de bacterias PGPR sobre cultivo de papa bajo diferentes sustratos a nivel de invernadero. The Biologist (Lima) 13(1): 75-89.
Celis, J.; Gallardo, I. 2008. Estandarización de métodos de detección para promotores de crecimiento vegetal (ácido indol acético, giberelinas) en cultivos microbianos. Tesis de grado, Pontificia Universidad Javeriana, Bogotá. Colombia. 159 pp.
Cook, A.; Meyers, P. 2003. Rapid identifications of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. International J. of Systematic and Evolutionary Microbiol. 53: 1907-1915.
Crowley, D.A. 2006. Microbial siderophores in the plant rhizosphere. In: Barton, L. L.; Abadia, J. (eds). Iron nutrition in plants and rhizospheric microorganisms. Springer. Netherlands. Pp 169-189.
Doumbou, C.; Hamby, S.M.; Crawford, D.; et al. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82(3): 85-102.
FAO - Organización de las Naciones Unidas para la Agricultura y la Alimentación. 2008. Gestión de las plagas y enfermedades de la papa. Available at: http://www.fao.org/potato-2008/es/lapapa/IYP-5es.pdf
Franco, M. 2008. Evaluación de caracteres PGPR en Actinomicetos e interacciones de estas rizobacterias con hongos formadores de micorrizas. Tesis de doctorado, Universidad de Granada, Granada. España. 261 pp.
Franco, M.; Chavarro V. 2016. Actinobacteria as Plant Growth - Promoting Rhizobacteria. In: Open Access books Built by scientists, for scientists, Chapter 10. Available at:
Gunmarsson, N.; Mortensen, U.K.; Sosio, M.; et al. 2004. Identification of Entner-Doudoroff pathway in an antibiotic-producing actinomycetes species. Molec. Microbiol. 52(3): 895-902.
Han, D.; Wang, L.; Luo, Y. 2018. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiological research 208: 1-11.
Hernández, A. 2002. Obtención de un biopreparado a partir de rizobacterias asociadas al cultivo del maíz (Zea mays L.). Tesis de doctorado. Universidad de La Habana, La Habana. Cuba. 100 pp.
IDEXCAM - Investigación y Desarrollo de Comercio Exterior de la Cámara de Comercio de Lima. 2018. Papa, milenario producto andino. Available at: https://www.camaralima.org.pe/repositorioaps/0/0/par/estudio4/papamilenarioproductoandino.pdf
Jog, R.; Pandhya, M.; Nareshkumar, G.; et al. 2014. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160: 778-788.
Li, Y.; Guo, Q.; He, F.; et al. 2019. Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota. Soil Microbiology 19: 134-147.
Matsukawa, E.; Nakagawa, Y.; Iimura, Y.; et al. 2007. Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica 6:1-8.
Olanrewaju, O.S.; Babalola, O.O. 2019. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology 103: 1179-1188.
Oswald, A.; Calvo, P. 2009. Using rhizobacteria to improve productivity of potato. In 15th Triennial International Society for Tropical Root Crops (ISTRC), Lima, 2-6 nov, 2009.
Rico, M. 2009. Capacidad promotora de crecimiento vegetal por bacterias del género Azotobacter y Actinomicetos aislados de cultivos de Solanum tuberosum Linnaeus, 1753 (Papa) cultivados en zonas altoandinas del Perú. Tesis de grado, Universidad Nacional Mayor de San Marcos, Lima. Perú.152 pp.
Rodríguez, H.; Fraga, R.; Gonzalez, T.; et al. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287(1): 15-21.
Salazar, A.; Ordoñez, C. 2013. Aislamiento e identificación de actinomicetos fijadores de nitrógeno en suelo del Jardín Botánico de la Universidad Tecnológica de Pereira. Tesis de grado, Universidad Tecnológica de Pereira, Pereira. Colombia. 115 pp.
Sathya, A.; Vijayabharathi, R.; Gopalakrishnan. 2017. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7: 102.
Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; et al. 2016. Exploring plant growth-promotion action-mycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology 47(1): 85-95.
Simon, P.; Tessman, I. 1963. Thymidine-requiring mutans of phage T4. Proc. Natl. Acad. Sci. USA. 50: 526-532.
Valdés, M.; Pérez, N.; Estrada, P.; et al. 2005. Non-Frankia Actinomycetes Isolated from Surface-Sterilized Roots of Casuarina equisetifolia Fix Nitrogen. Appl. Environm. Microb. 71(1): 445-446.
Vásquez, P.; Holguin, C.; Puente, M. 2000. Phosphate-solubilizing microorganisms associated with rhizosphere of mongroves in a semiarid coastal lagoon. Biol. Fertl. Soils 30: 460-468.
Wahyudi, A.; Priyanto, J.; Afrista, R.; et al. 2019. Plant growth promoting activity of actinomycetes isolated from Soybean Rhizosphere. Online Journal of Biological Sciences 19(1): 1-8.
Wang, W.; Qiu, Z.; Tan, H.; et al. 2014. Siderophore production by actinobacteria. Biometals 27: 623-631
Zahir, A.Z.; Arshad, M.; Frankenberg, W.T. 2004. Plant Growth Promoting Rhizobacteria: Applications and Perspectives in Agricultura. Advances in Agronomy 81: 97-108.
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).