Vibrio harveyi effect under survival of Litopenaeus vannamei larvae
DOI:
https://doi.org/10.17268/sci.agropecu.2013.02.05Keywords:
Litopenaeus vannamei, shrimp, infection, survival, Vibrio harveyiAbstract
The culture of aquatic organisms show a high relevance in the human feeding and the culture activities can create artificial conditions that increase the growth and selection of specific bacteria. Vibrio species are normal bacteria’s from microflora of penaeid shrimp, those are opportunistic pathogens that can take advantage of the ecological changes generated for the culture of aquatic organisms and which may cause diseases, low survival and economic losses in the shrimp production. The aim of this research was to determine the variation in the survival of different larval substages (nauplius, zoea I-III, mysis I-III) and postlarvae 1, of Pacific white shrimp Litopenaeus vannamei exposed at three doses [103 , 105 , and 107 colony-forming unit (CFU) ml-1 [ of V. harveyi, by immersion (30 min) as infection method. This species generated a significant low survival in larvae (p < 0.05) only in high doses (105 and 107 CFU ml-1 ), where higher doses show the lowest values of survival. Larval substages and postlarvae 1 of shrimp showed sensitivity associate to the increase of Vibrio doses and this sensitivity decreased with the growth of larval substages and postlarvae 1. This information has high significance for the fisheries and aquaculture industry, which help to generate strategies to reduce the effects of V. harveyi with positive effect in growth and survival of the shrimp larvae and postlarvae 1.References
Abraham, T.J. 2006. Virulence of Vibrio harveyi possessing a transferable chloramphenicol resistance determinate to larvae of Indian whit shrimp Fenneropenaeus indicus (Decapoda). Indian Journal of Marine Science 35: 275-278.
Alavandi, S.V.; Manoranjita, V.; Vijayan, K.K.; Kalaimani, N., Santiago, T.C. 2006. Phenotypic and molecular typing of Vibrio harveyi isolates and their pathogenicity to tiger shrimp larvae. Letters in Applied Microbiology 43: 566–570.
Austin, B. 2010. Vibrios as causal agents of zoonoses. Veterinary Microbiology 140: 310–317.
Austin, B.; Zhang, X-H. 2006. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology 43: 119–124.
Campa-Cordova, A.I.; González-Ocampo, H.; Luna-González, A., Mazón-Suástegui, J.M.; Ascencio, F. 2009. Growth, survival, and superoxide dismutase activity in juvenile Crassostrea corteziensis (Hertlein, 1951) treated with probiotics. Hidrobiológica 19 (2): 151-157.
Chatterjee, S.; Haldar, S. 2012. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. Journal of Marine Science Research and Development S1:002.
FAO. 2012. The State of World Fisheries and Aquaculture. Editorial Group. FAO Information Division. Roma, Italia. Pp 1-197.
Hameed, A.S.S. 1995. Susceptibility of three Penaeus species to a Vibrio campbellii-like bacterium. Journal of the World Aquaculture Society 26: 315-318.
Kannapiran, E.; Ravindran, J.; Chandrasekar, R.; Kalaiarasi, A. 2009. Studies on luminous, Vibrio harveyi associated with shrimp culture system rearing Penaeus monodon. Journal of Environmental Biology 30: 791-795.
Karunasagar, I.; Pai, R.; Malathi, G.R.; Karunasagar, I. 1994. Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 128: 203-209.
Kobayashi, M.; Melkonyan, T. 2011. Strategic incentives in biosecurity investment: Theoretical and empirical analyses. Journal of Agricultural and Resource Economics 36: 242-262.
Mohajeri, J.; Afsharnasab, M.; Jalali, B.; Kakoolaki, S.; Sharifrohani, M.; Haghighi, A. 2011. Immunological and histopathological changes in Penaeus semisulcatus challenged with Vibrio harveyi. Iranian Journal of Fisheries Sciences 10: 254-265.
Powell, A.; Pope, E.C.; Eddy, F.E.; Roberts, E.C.; Shields, R.J.; Smith, P.; Topps, S.; Reid, J.; Rowley, A. F.; Francis, M. J. 2011. Enhanced immune defences in Pacific white shrimp (Litopenaeus vannamei) post-exposure to a vibrio vaccine. Journal of Invertebrate Pathology 107: 95–99.
Ravi, A.V.; Musthafa, K.S.; Jegathammbal, G.; Kathiresan, K.; Pandian, S.K. 2007. Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Letters in Applied Microbiology 45: 219–223.
Robertson, P.A.W.; Calderon, J.; Carrera, L.; Stark, J.R.; Zherdmant, M.; Austin, B. 1998. Experimental Vibrio harveyi infections in Penaeus vannamei. Diseases of Aquatic Organisms 32: 151-155.
Subasinghe, R.1997. Fish health and quarantine. In: Review of the State of World Aquaculture. Compilado por Shehadeh, Z. y Maclean J. FAO, Inland Water Resources and Aquaculture Service, Fishery Resources Division. Roma, Italia. Pp 1-166
Soto-Rodríguez, S.A.; Gómez-Gil, B.; Lozano, R.; Rio-Rodríguez, R.; Diéguez, A.L.; Romalde, J.L. 2012. Virulence of Vibrio harveyi responsible for the ‘‘Bright-red’’ syndrome in the Pacific white shrimp Litopenaeus vannamei. Journal of Invertebrate Pathology 109: 307-317.
Srinivas, S.P.; Abdulaziz, A.; Natamai, S.J.; Prabhakaran, P.; Balachandran, S.; Radhakrishnan, P.; Rosamma, P.; Ambat, M.; Bright Singh, I.S. 2010. Penaeus monodon larvae can be protected from Vibrio harveyi infection by pre-emptive treatment of a rearing system with antagonistic or non-antagonistic bacterial probiotics. Aquaculture Research 41: 847-860.
Vandenberghe, J.; Li, Y.: Verdonck, L.; Li, J.; Sorgeloos, P. 1998. Vibriosis associated with Penaeus chinensis (Crustacea: Decapoda) larvae in Chinense shrimp hatcheries. Aquaculture 169: 121-132.
Vieira, F.N.; Pedrotti, F.S.; Neto, C.C.B.; Pedreira-Mouriño, J.L.; Beltrame, E.; Martins, M.L.; Ramírez, C.; Vinatea-Arana, L.A. 2007. Lactic-acid bacteria increase the survival of marine shrimp, Litopenaeus vannamei, after infection with Vibrio harveyi. Brazilian Journal of Oceanography 55: 251-255.
Widanarni, A.; Suwanto, S.; Lay, B.W. 2003. Potency of vibrio isolates for biocontrol of vibriosis in tiger shrimp (Penaeus monodon) larvae. Biotropia 20: 11- 23.
Wongtavatchai, J.; López-Dóriga, M.V.; Francis, M.J. 2010. Effect of AquaVac™ Vibromax™ on size and health of post larva stage of pacific white shrimp Litopenaeus vannamei and black tiger shrimp Penaeus monodon. Aquaculture 308: 75–81.
Xu-xia, Z.; Yan-bo, W.; Wei-fen, L. 2009. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture 287: 349–353.
Received: 30/04/13
Accepted: 2905/13
Corresponding author: E-mail: gabaguirre@uat.edu.mx (G. Aguirre-Guzmán)
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).