Proximal composition and functional properties of lyophilizated surimi of Dosidicus gigas “jumbo squid”
DOI:
https://doi.org/10.17268/sci.agropecu.2017.01.05Keywords:
surimi, jumbo squid, Dosidicus gigas, protein functional propertiesAbstract
The purpose of the research was to determinate proximal composition and functional properties of the giant squid freeze-dried surimi (Dosidicus gigas). Surimi elaborated from giant squid and it lyophilized until obtaining surimi powder to evaluate its characteristics and functional properties. The protein content was 58.7% and carbohydrate 30.5%. Protein solubility in water and salt (3%) were 21.1% and 40.6% respectively, these values being higher than surimi powder of commercial species. The gelling capacity was 2.4% and the emulsifying capacity was 79.9% at a concentration of 1.0%. The color on the Hunter scale was L*: 91.5; a*: 0.5; b*: 7.0. Giant squid powder surimi considered as a functional protein powder due to its percentage protein content, and had good technological characteristics and great potential in the food industry.References
AOAC. 2000. Official methods of analysis of the association of official analytical chemists (17th ed.). DC: Washington. EEUU.
Berghout, J.; Boom, R.; Van der Goot, A. 2015. Understanding the differences in gelling properties between lupin proteins isolate and soy protein isolate. Food Hydrocolloids 43: 465-472.
Binsi, P.; Nayak, N.; Sarkar, P.; Jeyakumari, A.; Muhamed Ashraf, P.; Ninan, G.; Ravishankar, C. 2017. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics. Food Chemistry 219: 158–168.
Campo-Deaño, L.; Tovar, C.; Pombo, M.; Solas, M.; Borderías, A. 2009. Rheological study of giant squid surimi (Dosidicus gigas) made by two methods with different cryoprotectants added. Journal of Food Engineering 94(1): 26–33.
Campo-Deaño, L.; Tovar, C.; Borderías, J. 2010. Effect of several cryoprotectants on the physicochemical and rheological properties of suwari gels from frozen squid surimi made by two methods. Journal of Food Engineering 97(4): 457–464.
de la Fuente-Betancourt, G.; García-Carreño, F.; Navarrete del Toro, M.; Pacheco-Aguilar, R.; Córdova-Murueta, J. 2008. Effect of storage at 0 °C on mantle proteins and functional properties of jumbo squid. International Journal Food Science and Technology 43: 1263-1270.
Galla, N.; Pamidighantam, P.; Akula, S.; Karakala, B. 2012. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry 135(3): 1479–1484.
Ghribi, A.; Gafsi, I.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. 2015. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering 165: 179–188.
Huda, N.; Abdullah, A.; Salam, A. 2001. Functional properties of surimi powder from three marine fish. Journal of Food Science and Technology 36: 401-406.
Intarasirisawat, R.; Benjakul, S.; Vissessanguan, W.; Maqsood, S.; Osako, K. 2015. Skipjack roe protein hydrolysate combined with tannic acid increases the stability of fish oil upon microencapsulation. European Journal of Lipid Science and Technology 117(5): 646–656.
Jeyakumari, A.; Kothari, D.; Venkateshwarlu, G. 2014. Microencapsulation of fish oil-milk based emulsion by spray drying: Impact on Oxidative Stability. Fishery Technology 51(1): 31–37.
Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Carrascal, J.; Rojas, T. 2015. Volatile compounds and physicochemical characteristics during storage of microcapsules from different fish oil emulsions. Food and Bioproducts Processing 96: 52–64.
Konno, K.; Young-ie, C.; Yoshioka, T.; Shinho, P.; Seki, N. 2003. Thermal denaturation and autolysis profile of myofibrillar proteins of mantle muscle of jumbo squid Dosidicus gigas. Fisheries Science 69: 204–209.
Leyva-Mayorga, M.; Ramírez, J.; Martín-Polo, M.; Hernández, H.; Vázquez, M. 2002. Empleo de su surimi liofilizado en emulsiones cárnicas con bajo contenido de grasa. Ciencia Tecnológica Alimentaria 3(5): 288-294.
Li, J.; Xiong, S.; Wang, F.; Regenstein, J.; Liu, R. 2015. Optimization of microencapsulation of fish oil with gum arabic/casein/beta-cyclodextrin mixtures by spray drying. Journal of Food Science 80(7): 1445–1452.
Miller, R.; Groninger, H. 1976. Functional properties of enzyme modified acylated fish protein derivates. Journal of Food Science 41: 268-272.
Montejano, J.; Morales, O.; Díaz, S. 1994. Rheology of gels of freeze-dried surimi of trout (Cyanoscion nothus) and tilapia (Oreochromis niloticus). Revista Española de Ciencia y Tecnología de Alimentos. 34: 165-167.
Moreno, H.; Herranz, B.; Pérez-Mateos, M.; Sánchez-Alonso, I.; Borderías, J. 2016. New Alternatives in Seafood Restructured Products. Critical Reviews in Food Science and Nutrition 56(2): 237-248.
Ramírez, J. A.; Uresti, R. M.; Velázquez, G.; Vázquez, M. 2011. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A Review. Food Hydrocolloids 25: 1842–1852.
Sánchez-Alonso, I.; Careche, M.; Borderías, A. J. 2007. Method for producing a functional protein concentrate from giant squid (Dosidicus gigas) muscle. Food Chemistry 100: 48–54.
Shahidi, F.; Xiao-Qing, H.; Synowiecki, J. 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry 53: 285–293.
Taheri, A.; Anvar, S.; Ahari, H.; Fogliano, V. 2013. Comparison the functional properties of protein hydrolysates from poultry byproducts and rainbow trout (Oncorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences 12(1): 154-169.
Wahl, V.; Khinast, J.; Paudel, A. 2016. Lyophilized Protein Powders: A Review of Analytical Tools for Root Cause Analysis of Lot-to-Lot Variability. Trends in Analytical Chemistry 82: 468–491.
Yang, Y.; Anvari, M.; Pan, C.; Chung, D. 2012. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions. Food Chemistry 135(2): 555–561.
Zhou, A.; Benjakul, S.; Pan, K.; Gong, J.; Liu, X. 2006. Cryoprotective effects of trehalose and sodium lactate on tilapia (Sarotherodon nilotica) surimi during frozen storage. Food Chemistry 96: 96–103.
Received November 13, 2015.
Accepted March 19, 2017.
Corresponding author: jcordovar1@unmsm.edu.pe (J.S. Córdova-Ramos).
Downloads
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).