Fatty acids and parameters of quality in the oil of wild grapes (Vitis spp.)

Authors

  • O. Franco-Mora Universidad Autónoma del Estado de México, Toluca
  • J. Salomon-Castaño Universidad Autónoma del Estado de México, Toluca
  • A. A. Morales Universidad Autónoma del Estado de México, Toluca
  • Á. Castañeda-Vildózola Universidad Autónoma del Estado de México, Toluca
  • M. Rubí-Arriaga Universidad Autónoma del Estado de México, Toluca

DOI:

https://doi.org/10.17268/sci.agropecu.2015.04.04

Keywords:

non-saturated fatty oil, linoleic acid, oleic acid, food potential, American grapes

Abstract

Mexico is one of the centers of origin of the genus Vitis. Most of the native species are in an underutilized or neglected status. Thus, this work was performed aiming the determination of the potential of Mexican native grapes as a source of plant oil. It was determined the amount of oil and its fatty acid composition in seeds of wild grapes (Vitis spp.) in fruits collected in Temascaltepec, Mexico and harvested from a cropped accession growing in Zumpahuacán, Mexico. The average content of oil in seeds was 16.7% presenting four main fatty acids, linoleic, oleic, palmitic and stearic (71.5, 17.2, 6.6 and 4.3%, respectively). In the oil obtained from Temascaltepec grapes, there were determined some oil quality indexes. Possibly, the unsaturated fatty acid content explains the index of iodine (57.9 g/100 g), soapy number (170.7 mg/g), as well as the peroxide value (30 mEq/kg). Nevertheless, the high content of unsaturated fatty acid was not related with the smoking point (211 °C), although this value might be related to the content of palmitic and stearic acid. Oil from wild grape shows similar quality parameters compared with V. vinifera seed oil, thus its culinary, agro-industrial and cosmetic potential is noted.

References

Adam, J.; Tesche, A.; Wolfram, G. 2008. Impact of linoleic acid intake on arachidonic acid formation and eicosanoid biosynthesis in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids 79: 177-181.

Alves, R.D.; Moreira, A.P.; Macedo, V.S.; Goncalves, A.R.C.; Bressan, J.; Mattes, R.; Costa, N.M. 2014. Regular intake of high-oleic peanuts improves fat oxidation and body composition in overweight/obese men pursuing a energy-restricted diet. Obesity 22: 1422-1429.

AOCS. 2009. Official Methods and Recommended Practices. Champaign, Illinois, American Oil Chemists’ Society.

Bakke, S.S.; Moro, C.; Nikolić, N.; Hessvik, N.P.; Badin, P.; Lauvhaug, L.; Fredriksson, K.; Hesselink, M.K.C.; Boekschoten, M.V.; Kersten, S.; Gaster, M.; Thoresen, G.H.; Rustan, A.C. 2012. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase. Biochimica et Biophysica Acta 1821: 1323-1333.

Balat, M. 2011. Potential alternatives to edible oils for biodiesel production. A review of current work. Energy Conversion and Management 52: 1479-1492.

Bhosle, B. M.; Subramanian, R. 2005. New approches in deacidification of edible oils – a review. Journal of Food Engineering 69: 481-494.

Cheng, L.; Yu, Y.; Szabo, A.; Wu, Y.; Wang, H.; Camer, D.; Huang, X. 2015. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. Journal of Nutritional Biochemistry 26: 541-548.

Chira, N.; Todaşcă, C.; Nicolescu, A.; Păunescu, G.; Roşca, S. 2009. Determination of the technical quality indices of vegetable oils by modern physical techniques. U.P.B. Scientific Bulletin, Series B. Chemistry and Materials Science 71: 3-12.

Da Porto, C.; Porretto, E.; Decorti, D. 2013. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry 20: 1076-1080.

Eristsland, J. 2000. Safety considerations of polyunsaturated fatty acids. American Journal of Clinical Nutrition 71: 197S-201S.

Fernandes, L.; Casal, S.; Cruz, R.; Pereira, J.A.; Ramalhona, E. 2013. Seed oils of ten Portuguese varieties with interesting chemical and antioxidant properties. Food Research International 50: 161-166.

Franco, M.O.; Cruz, C.J.G. 2012. La vid silvestre en México. Actualidades y potencial. Toluca, UAEM-ACA.

Franco-Mora, O.; Aguirre-Ortega, S.; González-Huerta, A.; Castañeda-Vildózola, A.; Morales-Rosales, E.J.; Pérez-López, D.J. 2012. Characterization of Vitis cinerea Engelm. Ex Millardet fruits from the southern region of the State of Mexico, Mexico. Genetic Resources and Crop Evolution 59: 1899-1906.

Freitas, L.S.; Dariva, C.; Jacques, R.A.; Caramão, E.B. 2013. Effect of experimental parameters in the pressurized liquid extraction of brazilian grape seed oil. Separation and Purification Technology 116: 313-318.

Gobierno de México. 2009. PROY-NMX-F-588-SCFI-2009. Aceites y grasas- aceite comestible puro de pepita de uva – especificaciones. Secretaria de Economía, México (en línea). Disponible en 200.77.231.100/work/normas/nmx/2009/proy/nmx/f/588/scfi/2009. Accesado 4 marzo de 2014.

Göktürk-Baydar, N.; Akkurt, M. 2001. Oil content and oil quality of some grape seeds. Turkish Journal of Agriculture and Forestry 25: 163-168.

Gomez, A.M.; Lopez, C.P.; De la Ossa, E.M. 1996. Recovery of grape seed oil by liquid and supercritical dioxide extraction: A comparison with conventional solvent extraction. The Chemical Engineering Journal and the Biochemical Engineering Journal 61: 227-231.

Hanganu, A.; Todaşcă, M.C.; Chira, N.A.; Magunu, M.; Roşca, S. 2012. The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chemistry 134: 2453-2458.

Kamel, B.S.; Dawson, H.; Kakuda, Y. 1985. Characteristics and composition of melon and grape seed oils and cakes. Journal of the American Chemical Society 62: 881-883.

Lutterodt, H.; Slavin, M.; Whent, M.; Turner, E.; Yu, L. 2011. Fatty acid composition, oxidative stability, antioxidant and anti proliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry 128, 391-399.

Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. 2009. Residues of grapes (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry 112: 551-559.

Matthäus, B. 2008. Virgin grape seed oil: Is it a really nutritional highlight? European Journal of Lipid Science and Technology 110: 645-650.

Mieres, P.A.; Andrade, A.; García, L.; Londoño, P. 2012. Extracción del aceite de semilla de uva variedda "Criolla negra" y su caracterización. Anales Universidad Metropolitana 12: 193-206.

Myles, S.; Boyco, A.R.; Owens, C.L.; Brown, P.J.; Grassi, F.; Aradhya, M.K.; Prins, B.; Reynolds, A.; Chia, J.M.; Bustamante, C.D.; Buckler, E.S. 2011. Genetic structure and domestication history of the grape. Proceedings of the National Academy of Science 108: 3530-3535.

Paladino, S.C.; Zuritz, C.A. 2012. Extracto de semillas de vid (Vitis vinifera L.) con actividad antioxidante: concentración, deshidratación y comparación con antioxidantes de uso comercial. Revista de la Facultad de Ciencias Agrarias 44: 131-143.

Pan, P.; Lin, S.; Ou, Y.; Chen, W.; Chuang, Y.; Yen, Y.; Liao, S.; Raung, S.; Chen, C. 2010. Stearic acid attenuates cholestasis-induced liver injury. Biochemical and Biophysical Research Communicatios 391: 1537-1542.

Panza, F.; Solfrizzi, V.; Colacicco, A.M.; D´Introno, A.; Capurso, C.; Torres, F.; Capurso, S. 2004. Mediterranean diet and cognitive decline. Public Health Nutrition 7: 959-963.

Prado, J.M.; Dalmolil, I.; Carareto, N.D.D.; Basso, R.C.; Meirelles, J.A.; Oliveira, J.V.; Batista, E.A.C.; Meireles, M.A. 2012. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. Journal of Food Engineering 109: 249-257.

Rombaut, N.; Savoire, R.; Thomasset, B.; Bélliard, T.; Castello, J.; Van Hecke, E.; Lanoisellé, J.L. 2014. Grape seed oil extraction: Interest of supercritical fluid extraction and gas-assisted mechanical extraction for enhancing polyphenol co-extraction in oil. Comptes Rendus Chimie 17: 284 - 292.

Shiraishi, M.; Shiraishi, S. 1997. Database of grape genetic resources for 21-st Century ampelography. Fukuoka, Kyushu University.

Tanilgan, K.; Özcan, M.M.; Ünver, A. 2007. Physical and chemical characteristics of five Turkish olive (Olea europea L.) varieties and their oils. Grasas y aceites 58: 142-147.

Vieira, D.S.; Menezes, M.; Gonçalves, G.; Mukai, H.; Lenzi, E.K.; Pereira, N.C.; Fernandes, P.R.G. 2015. Temperature dependence of refractive index and of electrical impedance of grape seed (Vitis vinifera, Vitis labrusca) oils extracted by Soxhlet and mechanical pressing. Grasas Aceites 66: e083.

Viladomiu, M.; Hontecillas, R.; Bassaganya-Riera, J. 2015. Modulation of inflammation and immunity by dietary conjugated linoleic acid. European Journal of Pharmacology. doi:10.1016/j.ejphar.2015.03.095. (In press).

Yousefi, M.; Nateghi, L.; Gholamian, M. 2013. Physicochemical properties of two of shahrodi grape seed oil (Lal and Khalili). European Journal of Experimental Biology 3: 115-118.

Recibido 03 julio 2015.

Aceptado 23 noviembre 2015.

Corresponding author: E-mail: ofrancom@uaemex.mx (O. Franco).

Published

2015-12-05

How to Cite

Franco-Mora, O., Salomon-Castaño, J., Morales, A. A., Castañeda-Vildózola, Á., & Rubí-Arriaga, M. (2015). Fatty acids and parameters of quality in the oil of wild grapes (Vitis spp.). Scientia Agropecuaria, 6(4), 271-278. https://doi.org/10.17268/sci.agropecu.2015.04.04

Issue

Section

Original Articles