Tipos de fraudes en carnes y productos cárnicos: una revisión
DOI:
https://doi.org/10.17268/sci.agropecu.2015.03.09Palabras clave:
fraude, adulteración, alimentos, falsificación, PCRResumen
En años recientes la importancia del control de alimentos, en cuanto a la identificación de sus componentes para evitar fraudes, ha crecido tanto en interés en las organizaciones estatales como en las empresas y en las industrias. La globalización, el aumento de las importaciones y exportaciones, y los tratados de libre comercio han propiciado un mayor intercambio y acceso de los alimentos a nivel mundial; junto con ello los problemas asociados a los fraudes tales como la adulteración, sustitución, la intencionalidad, y falsificación se han incrementado. Por ello, se han reportado varios trabajos asociados al fraude alimentario, donde en la mayoría de ellas se muestran aplicaciones de nuevas técnicas de identificación. Sin embargo, una discusión acerca de los tipos de fraude y su impacto sobre la sociedad, el bioterrorismo y la religión, ha sido poco abordada. Esta revisión se enfoca básicamente en describir los tipos de fraude en alimentos más comunes. Así como, se mencionan las recientes técnicas disponibles para detectar una adulteración en carnes.Citas
Abdolmaleki, F.; Assadi, M.M.; Ezzatpanah, H.; Honarvar, M. 2014. Impact of fruit processing methods on DNA extraction from transgenic frozen banana products. European Food Research and Technology 239(3): 509-517.
Aguado, V.; Vitas, A.I.; Garcia-Jalon, I. 2004. Characterization of Listeria monocytogenes and Listeria innocua from a vegetable processing plant by RAPD and REA. International Journal of Food Microbiology 90(3): 341-347.
Ali, M.E.; Kashif, M.; Uddin, K.; Hashim, U.; Mustafa, S.; Man, Y.B. 2012. Species Authentication Methods in Foods and Feeds: the Present, Past, and Future of Halal Forensics. Food Analytical Methods 5(5): 935-955.
Ali, M.E.; Razzak, M.A.; Abd-Hamid, S.B. 2014. Multiplex PCR in Species Authentication: Probability and Prospects-A Review. Food Analytical Methods 7(10): 1933-1949.
Alomar, D.; Gallo, C.; Castaneda, M.; Fuchslocher, R. 2003. Chemical and discriminant analysis of bovine meat by near infrared reflectance spectroscopy (NIRS). Meat Science 63(4): 441-450.
Alves, E.; Castellanos, C.; Olivo, C.; Silio, L.; Rodriguez, C. 2002. Differentiation of the raw material of the Iberian pig meat industry based on the use of amplified fragment length polymorphism. Meat Science 61(2): 157-162.
Angood, K.M.; Wood, J.D.; Nute, G.R.; Whittington, F. M.; Hughes, S.I.; Sheard, P.R. 2008. A comparison of organic and conventionally-produced lamb purchased from three major UK supermarkets: Price, eating quality and fatty acid composition. Meat Science 78(3): 176-184.
Aristoy, M.C.; Toldra, F. 2004. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Science 67(2): 211-217.
Ayaz, Y.; Ayaz, N.D.; Erol, I. 2006. Detection of species in meat and meat products using enzyme-linked immunosorbent assay. Journal of Muscle Foods 17(2): 214-220.
Bahar, B.; Schmidt, O.; Moloney, A.P.; Scrimgeour, C.M.; Begley, I.S.; Monahan, F.J. 2008. Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef. Food Chemistry 106(3): 1299-1305.
Ballin, N.Z. 2010. Authentication of meat and meat products. Meat Science 86(3): 577-587.
Ballin, N.Z.; Lametsch, R. 2008. Analytical methods for authentication of fresh vs. thawed meat - A review. Meat Science 80(2): 151-158.
Ballin, N.Z.; Vogensen, F.K.; Karlsson, A.H. 2009. Species determination - Can we detect and quantify meat adulteration? Meat Science 83(2): 165-174.
Bello-Pérez, L.A.; Ortíz-Dillanes, D.M.; Peréz-Memije, E.; Castro-Dominguez, V. 1990. Salmonella en carnes crudas: un estudio en localidades del estado de Guerrero. Salud pública Méx; 32(1): 74-9.
Belloque, J.; Garcia, M.C.; Torre, M.; Marina, M.L. 2002. Analysis of soyabean proteins in meat products. A review. Critical Reviews in Food Science and Nutrition 42(5): 507-532.
Brodmann, P.D.; Moore, D. 2003. Sensitive and semi-quantitative TaqMan (TM) real-time polymerase chain reaction systems for the detection of beef (Bos taurus) and the detection of the family Mammalia in food and feed. Meat Science 65(1): 599-607.
Bruni, I.; Galimberti, A.; Caridi, L.; Scaccabarozzi, D.; De Mattia, F.; Casiraghi, M.; Labra, M. 2015. A DNA barcoding approach to identify plant species in multiflower honey. Food Chemistry 170: 308-315.
Buckenhuskes, H.J. 2014. Basics of kosher food production. Zeitschrift Fur Arznei - and Gewurzpflanzen 19(2): 88-92.
Calvo, J.H.; Rodellar, C.; Zaragoza, P.; Osta, R. 2002. Beef- and bovine-derived material identification in processed and unprocessed food and feed by PCR amplification. Journal of Agricultural and Food Chemistry 50(19): 5262-5264.
Calvo, J.H.; Zaragoza, P.; Osta, R. 2001. Random amplified polymorphic DNA fingerprints for identification of species in poultry pate. Poultry Science 80(4): 522-524.
Campbell, H.; Murcott, A.; MacKenzie, A. 2011. Kosher in New York City, halal in Aquitaine: challenging the relationship between neoliberalism and food auditing. Agriculture and Human Values 28(1): 67-79.
Castro, F.; Garcia, M.C.; Rodriguez, R.; Rodriguez, J.; Marina, M.L. 2007. Determination of soybean proteins in commercial heat-processed meat products prepared with chicken, beef or complex mixtures of meats from different species. Food Chemistry 100(2): 468-476.
Cremonesi, P.; Pisani, L.F.; Lecchi, C.; Ceciliani, F.; Martino, P.; Bonastre, A.S.; Castiglioni, B. 2014. Development of 23 individual TaqMan (R) real-time PCR assays for identifying common foodborne pathogens using a single set of amplification conditions. Food Microbiology 43: 35-40.
Chen, J.H.; Zhang, X.; Cai, S.X.; Wu, D.Z.; Chen, M.; Wang, S.H.; Zhang, J. 2014. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosensors and Bioelectronics 57: 226-231.
Chen, S.Y.; Zhang, Y.X.; Li, H.; Wang, J.H.; Chen, W.L.; Zhou, Y.; Zhou, S. 2014. Differentiation of fish species in Taiwan Strait by PCR-RFLP and lab-on-a-chip system. Food Control 44: 26-34.
Chen, X.X.; Gan, M.; Xu, H.; Chen, F.; Ming, X.; Xu, H. Y.; Liu, C.W. 2014. Development of a rapid and sensitive quantum dot-based immunochromatographic strip by double labeling PCR products for detection of Staphylococcus aureus in food. Food Control 46; 225-232.
Dalvit, C.; De Marchi, M.; Cassandro, M. 2007. Genetic traceability of livestock products: A review. Meat Science 77(4), 437-449.
Dalvit, C.; De Marchi, M.; Dal Zotto, R.; Gervaso, M.; Meuwissen, T.; Cassandro, M. 2008. Breed assignment test in four Italian beef cattle breeds. Meat Science 80(2), 389-395.
Delibato, E.; Rodriguez-Lazaro, D.; Gianfranceschi, M.; De Cesare, A.; Comin, D.; Gattuso, A.; De Medici, D. 2014. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat. International Journal of Food Microbiology 184: 134-138.
Demirhan, Y.; Ulca, P.; Senyuva, H.Z. 2012. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication. Meat Science 90(3): 686-689.
Druml, B.; Grandits, S.; Mayer, W.; Hochegger, R.; Cichna-Markl, M. 2015. Authenticity control of game meat products - A single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR. Food Chemistry 170: 508-517.
Ecker, C.; Ertl, A.; Pulverer, W.; Nemes, A.; Szekely, P.; Petrasch, A.; Cichna-Markl, M. 2013. Validation and comparison of a sandwich ELISA, two competitive ELISAs and a real-time PCR method for the detection of lupine in food. Food Chemistry 141(1): 407-418.
Flores-Munguia, M.E.; Bermudez-Almada, M.C.; Vazquez-Moreno, L. 2000. A research note: Detection of adulteration in processed traditional meat products. Journal of Muscle Foods 11(4): 319-325.
Franke, B.M.; Haldimann, M.; Gremaud, G.; Bosset, J.O.; Hadorn, R.; Kreuzer, M. 2008. Element signature analysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat. European Food Research and Technology 227(3): 701-708.
Food Safety, Authority of Ireland, 2013. https://www.fsai.ie/news_centre/news/Annual_Report_2013.html
Garrido-Maestu, A.; Chapela, M.J.; Vieites, J.M.; Cabado, A.G. 2014. Application of real-time PCR to detect Listeria monocytogenes in a mussel processing industry: Impact on control. Food Control 46: 319-323.
Gattuso, A.; Gianfranceschi, M.V.; Sonnessa, M.; Delibato, E.; Marchesan, M.; Hernandez, M.; Rodriguez-Lazaro, D. 2014. Optimization of a Real Time PCR based method for the detection of Listeria monocytogenes in pork meat. International Journal of Food Microbiology 184: 106-108.
Hilas, C.S.; Mastorocostas, P.A. 2008. An application of supervised and unsupervised learning approaches to telecommunications fraud detection. Knowledge-Based Systems 21(7): 721-726.
Hong, Y.; Yang, H.S.; Li, J.; Han, S.K.; Chang, H.C.; Kim, H.Y. 2014. Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. Journal of the Science of Food and Agriculture 94(2): 296-300.
Huang, Y.K.; Chen, X.J.; Duan, N.; Wu, S.J.; Wang, Z.P.; Wei, X.L.; Wang, Y.F. 2015. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chemistry 166: 623-629.
Imaizumi, K.; Akutsu, T.; Miyasaka, S.; Yoshino, M. 2007. Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. International Journal of Legal Medicine 121(3): 184-191.
Iwobi, A.; Sebah, D.; Kraemer, I.; Losher, C.; Fischer, G.; Busch, U.; Huber, I. 2015. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chemistry 169: 305-313.
Just, D.R.; Wansink, B.; Turvey, C.G. 2009. Biosecurity, Terrorism, and Food Consumption Behavior: Using Experimental Psychology to Analyze Choices Involving Fear. Journal of Agricultural and Resource Economics 34(1): 91-108.
Kadiroglu, P.; Korel, F.; Ceylan, C. 2014. Quantification of Staphylococcus aureus in white cheese by the improved DNA extraction strategy combined with TaqMan and LNA probe-based qPCR. Journal of Microbiological Methods 105: 92-97.
Kaminska, P.S.; Yernazarova, A.; Murawska, E.; Swiecicki, J.; Fiedoruk, K.; Bideshi, D.K.; Swiecicka, I. 2014. Comparative analysis of quantitative reverse transcription real-time PCR and commercial enzyme imunoassays for detection of enterotoxigenic Bacillus thuringiensis isolates. Fems Microbiology Letters 357(1): 34-39.
Keeratipibul, S.; Techaruwichit, P. 2012. Tracking sources of Listeria contamination in a cooked chicken meat factory by PCR-RAPD-based DNA fingerprinting. Food Control 27(1): 64-72.
Kesselheim, A.; Mello, M.; Studdert, D. 2010. Experiences Of Whistleblowers In Major Fraud Litigation Against Pharmaceutical Manufacturers. Journal Of General Internal Medicine 25: 273-273.
Khemthongcharoen, N.; Wonglumsom, W.; Suppat, A.; Jaruwongrungsee, K.; Tuantranont, A.; Promptmas, C. 2015. Piezoresistive Microcantilever-Based Dna Sensor For Sensitive Detection Of Pathogenic Vibrio Cholerae O1 In Food Sample. Biosensors And Bioelectronics 63: 347-353.
Kitpipit, T.; Sittichan, K.; Thanakiatkrai, P. 2014. Direct-Multiplex Pcr Assay For Meat Species Identification In Food Products. Food Chemistry 163: 77-82.
Knutsson, R. 2011. A Tracing Tool Portfolio To Detect Bacillus Anthracis, Clostridium Botulinum And Noroviruses: Bioterrorism Is A Food safety and security issue. International Journal of Food Microbiology 145: S121-S122.
Koppel, R.; Sendic, A.; Waiblinger, H.U. 2014. Two quantitative multiplex real-time PCR systems for the efficient GMO screening of food products. European Food Research and Technology 239(4): 653-659.
Kwon, K.H.; Hwang, S.Y.; Park, Y.K.; Yoon, J.W.; Kim, S., Hong, J. 2014. A Quantitative Real-Time Immuno-PCR Assay for Detection of Staphylococcus Aureus Enterotoxin H. Journal of Food Safety 34(3): 249-256.
Levi, M.; Burrows, J. 2008. Measuring the impact of fraud in the UK. British Journal of Criminology 48(3): 293-318.
Li, L.R.; Shi, Y.H.; Cheng, X.R.; Xia, S.F.; Cheserek, M.J.; Le, G.W. 2015. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA. Food Chemistry 166: 231-239.
Liu, Y.; Wein, L.M. 2008. Mathematically assessing the consequences of food terrorism scenarios. Journal of Food Science 73(7): M346-M353.
Lv, Y.C.; Zheng, R.; Zuo, T.; Wang, Y.M.; Li, Z.J.; Xue, Y.; Tang, Q.J. 2014. Identification of Five Sea Cucumber Species Through PCR-RFLP Analysis. Journal of Ocean University of China 13(5): 825-829.
Maede, D. 2006. A strategy for molecular species detection in meat and meat products by PCR-RFLP and DNA sequencing using mitochondrial and chromosomal genetic sequences. European Food Research and Technology 224(2): 209-217.
Mancusi, R.; Trevisani, M. 2014. Enumeration of verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR. International Journal of Food Microbiology 184: 121-127.
Marchioni, E.; Horvatovich, N.; Charon, H.; Kuntz, F. 2005. Detection of irradiated ingredients included in low quantity in non-irradiated food matrix. 1. Extraction and ESR analysis of bones from mechanically recovered poultry meat. Journal of Agricultural and Food Chemistry 53(10): 3769-3773.
Martin, I.; Garcia, T.; Fajardo, V.; Rojas, M.; Pegels, N.; Hernandez, P.E.; Martin, R. 2009. SYBR-Green real-time PCR approach for the detection and quantification of pig DNA in feedstuffs. Meat Science 82(2): 252-259.
McKeague, M.; Velu, R.; Hill, K.; Bardoczy, V.; Meszaros, T.; DeRosa, M.C. 2014. Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A. Toxins 6(8): 2435-2452.
Medeiros, A.W.; d'Azevedo, P.; Pereira, R.I.; Cassenego, A.P.; Van Der Sand, S.; Frazzon, J.; Frazzon, A.P.G. 2010. PCR-RFLP of 16S ribosomal DNA to confirm the identification of Enterococcus gallinarum and Enterococcus casseliflavus isolated from clinical and food samples. Revista Da Sociedade Brasileira De Medicina Tropical 43(1): 100-101.
Mohtadi, H.; Murshid, A.P. 2009. Risk Analysis of Chemical, Biological, or Radionuclear Threats: Implications for Food Security. Risk Analysis 29(9): 1317-1335.
Moore, J.C.; DeVries, J.W.; Lipp, M.; Griffiths, J.C. 2009. ANYL 264-Analytical challenges for preventing the intentional adulteration of food ingredients. Abstracts of Papers of the American Chemical Society, 238.
Nakashita, R.; Suzuki, Y.; Akamatsu, F.; Iizumi, Y.; Korenaga, T.; Chikaraishi, Y. 2008. Stable carbon, nitrogen, and oxygen isotope analysis as a potential tool for verifying geographical origin of beef. Analytica Chimica Acta 617(1-2): 148-152.
Nejad, F.P.; Tafvizi, F.; Ebrahimi, M.T.; Hosseni, S.E. 2014. Optimization of multiplex PCR for the identification of animal species using mitochondrial genes in sausages. European Food Research and Technology 239(3): 533-541.
Newkirk, R.W.; Bender, J.B.; Hedberg, C.W. 2012. The Potential Capability of Social Media as a Component of Food Safety and Food Terrorism Surveillance Systems. Foodborne Pathogens and Disease 9(2): 120-124.
Osman, S.A.M.; Nishibori, M. 2014. Phylogenetic Analysis of South East Asian Countries Chickens Based on Mitochondrial DNA Variations. Journal of Poultry Science 51(3): 248-261.
Park, J.K.; Shin, K.H.; Shin, S.C.; Chung, K.Y.; Chung, E. R. 2007. Identification of meat species using species-specific PCR-RFLP fingerprint of mitochondrial 12S rRNA gene. Korean Journal for Food Science of Animal Resources 27(2): 209-215.
Pascoal, A.; Prado, M.; Calo, P.; Cepeda, A.; Barros-Velazquez, J. 2005. Detection of bovine DNA in raw and heat-processed foodstuffs, commercial foods and specific risk materials by a novel specific polymerase chain reaction method. European Food Research and Technology 220(3-4): 444-450.
Pennacchia, C.; Breeuwer, P.; Meyer, R. 2014. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus. Food Microbiology 43: 41-49.
Peres, B.; Barlet, N.; Loiseau, G.; Montet, D. 2007. Review of the current methods of analytical traceability allowing determination of the origin of foodstuffs. Food Control 18(3): 228-235.
Popovsky, M. 2010. The Constitutional Complexity of Kosher Food Laws. Columbia Journal of Law and Social Problems 44(1): 75-107.
Prado, M.; Calo-Mata, P.; Villa, T.G.; Cepeda, A.; Barros-Velazquez, J. 2007. Co-amplification and sequencing of a cytochrome B fragment affecting the identification of cattle in PCR-RFLP food authentication studies. Food Chemistry 105(1): 436-442.
Ramos-Gomez, S.; Busto, M.D.; Perez-Mateos, M.; Ortega, N. 2014. Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils. Food Chemistry 158: 374-383.
Ripp, F.; Krombholz, C.F.; Liu, Y.; Weber, M.; Schafer, A.; Schmidt, B.;
Hankeln, T. 2014. All-Food-Seq (AFS): a quantifiable screen for species
in biological samples by deep DNA sequencing. Bmc Genomics, 15.
Rodriguez-Lazaro, D.; Gonzalez-Garcia, P.; Delibato, E.; De Medici, D.;
Garcia-Gimeno, R.M.; Valero, A.; Hernandez, M. 2014. Next day Salmonella spp. detection method based on real-time PCR for meat, dairy and vegetable food products. International Journal of Food Microbiology 184: 113-120.
Rohonczy, K.; Zoller, L.; Hermann, Z.; Fodor, A.; Mraz, B.; Tabajdi-Pinter, V. 2014. Comparison Of An Automated Elfa And Two Different Real-Time Pcr Techniques For Salmonella Detection In Poultry Samples. Acta Microbiologica Et Immunologica Hungarica 61(3): 261-272.
Ruiz, P.; Sesena, S.; Palop, M.L. 2014. A comparative study of different PCR-based DNA fingerprinting techniques for typing of lactic acid bacteria. European Food Research and Technology 239(1): 87-98.
Safdar, M.; Junejo, Y.; Arman, K.; Abasiyanik, M.F. 2014a. A highly
sensitive and specific tetraplex PCR assay for soybean, poultry, horse and pork species identification in sausages: Development and validation. Meat Science 98(2): 296-300.
Safdar, M.; Junejo, Y.; Arman, K.; Abasiyanik, M.F. 2014b. Rapid Bovine and Caprine species Identification in Ruminant Feeds by Duplex Real-Time PCR Melting Curve Analysis Using EvaGreen Fluorescence Dye. Molecular Biotechnology 56(8): 770-776.
Saiyudthong, S.; Trevanich, S. 2013. An Optimized Ema-Rapd-Pcr For A Reliable Detection Of Viable Salmonella Spp. In Chicken Products. Journal Of Food Safety 33(3): 247-258.
Sasazaki, S.; Mutoh, H.; Tsurifune, K.; Mannen, H. 2007. Development of DNA markers for discrimination between domestic and imported beef. Meat Science 77(2): 161-166.
Saumya-Bhaduri. 2010. Effect of fat in ground beef on the growth and
virulence plasmid (pYV) stability in Yersinia pestis. International Journal of Food Microbiology 136 (3): 372–375.
Sentandreu, M.Ã.M.; Sentandreu, E. 2014. Authenticity of meat products: Tools against fraud. Food Research International, 60(0), 19-29.
Sesena, S.; Sanchez, I.; Palop, L. 2004. Genetic diversity (RAPD-PCR) of lactobacilli isolated from "Almagro" eggplant fermentations from two seasons. Fems Microbiology Letters 238(1): 159-165.
Shinzato, N.; Namihira, T.; Tamaki, Y.; Tsukahara, M.; Matsui, T. 2009. Application of random amplified polymorphic DNA (RAPD) analysis coupled with microchip electrophoresis for high-resolution identification of Monascus strains. Applied Microbiology and Biotechnology 82(6): 1187-1193.
Shioda, H.; Satoh, K.; Nagai, F.; Okubo, T.; Seto, T.; Hamano, T.; Kano, I. 2003. Identification of Aloe species by random amplified polymorphic DNA (RAPD) analysis. Journal of the Food Hygienic Society of Japan 44(4): 203-207.
Singh, P.; Mustapha, A. 2014. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella. Food Microbiology 44: 6-14.
Singh, U.; Arutyunov, D.; Basu, U.; Seckler, H.D.S.; Szymanski, C.M.; Evoy, S. 2014. Mycobacteriophage lysin-mediated capture of cells for the PCR detectio of Mycobacterium avium subspecies paratuberculosis. Analytical Methods 6(15): 5682-5689.
Spink, J. 2011. The Challenge of Intellectual Property Enforcement for Agriculture Technology Transfers, Additives, Raw Materials, and Finished Goods against Product Fraud and Counterfeiters. Journal of Intellectual Property Rights 16(2): 183-193.
Spink, J.; Moyer, D. 2011. Defining the Public Health Threat of Food Fraud. Journal of Food Science 76(9): R157-R163.
Spink, J.; Moyer, D. 2015. Introducing Food Fraud Including Translation and Interpretation to Russian, Korean, and Chinese Languages. Food Chemistry 189: 102-107.
Stampfer, S. 2014. Kosher: Private Regulation In The Age Of Industrial Food. Religious Studies Review 40: 113-113.
Sugiura, S. 2014. Rapid estimation of species-specific DNA digestibility based on differential qPCR. Fisheries Science 80(4): 795-801.
Suh, S.H.; Dwivedi, H.P.; Choi, S.J.; Jaykus, L.A. 2014. Selection and characterization of DNA aptamers specific for Listeria species. Analytical Biochemistry 459: 39-45.
Ubeda, J.F.; Fernandez-Gonzales, M.; Briones, A.I. 2009. Application of PCR-TTGE and PCR-RFLP for Intraspecific and Interspecific Characterization of the Genus Saccharomyces Using Actin Gene (ACT1) Primers. Current Microbiology 58(1): 58-63.
Ulca, P.; Balta, H.; Cagin, I.; Senyuva, H.Z. 2013. Meat species identification and Halal authentication using PCR analysis of raw and cooked traditional Turkish foods. Meat Science 94(3): 280-284.
van der Spiegel, M.; van der Fels-Klerx, H.J.; Sterrenburg, P.; van Ruth, S.M.; Scholtens-Toma, I.M.J.; Kok, E.J. 2012. Halal assurance in food supply chains: Verification of halal certificates using audits and laboratory analysis. Trends in Food Science and Technology 27(2): 109-119.
Viaene, S.; Derrig, R.A.; Baesens, B.; Dedene, G. 2002. A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. Journal of Risk and Insurance 69(3): 373-421.
von Bargen, C.; Brockmeyer, J.; Humpf, H.U. 2014. Meat Authentication: A New HPLC-MS/MS Based Method for the Fast and Sensitive Detection of Horse and Pork in Highly Processed Food. Journal of Agricultural and Food Chemistry 62(39): 9428-9435.
Wang, H.H.; Shu, R.H.; Zhao, Y.; Zhang, Q.Q.; Xu, X.L.; Zhou, G.H. 2014. Analysis of ERIC-PCR genomic polymorphism of Salmonella isolates from chicken slaughter line. European Food Research and Technology 239(3): 543-548.
Wasinski, B.; Osek, J. 2013. New methods of meat species identification and detection of meat adulterations. Medycyna Weterynaryjna 69(6): 348-352.
Wein, L.M.; Liu, Y.F. 2005. Analyzing a bioterror attack on the food supply: The case of botulinum toxin in milk. Proceedings of the National Academy of Sciences of the United States of America 102(28): 9984-9989.
Wheeler, R.; Aitken, S. 2000. Multiple algorithms for fraud detection. Knowledge-Based Systems 13(2-3), 93-99.
Wisniewska, M. 2014. Chemical Terrorism Food And Method Chem-Carver Plus Shock. Przemysl Chemiczny 93(1): 5-9.
Woodlee, J.W. 2012. How The Fda Food Safety Modernization Act Responds To Terrorism Threats: A Primer. Biosecurity And Bioterrorism-Biodefense Strategy Practice and Science 10(3): 258-262.
Wright, W.; Annes, A. 2013. Halal on the menu?: Contested food politics and French identity in fast-food. Journal of Rural Studies 32: 388-399.
Yoshida, T. 2008. Preparedness response to hazard and toxic incidents, and food terrorism. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan 128(6): 851-857.
Recibido 23 abril 2015.
Aceptado 19 julio 2015.
Corresponding author: teofilo.espinoza@ulagos.cl (T. Espinoza).
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).